L(s) = 1 | + 6.93i·2-s − 64.5·3-s + 79.8·4-s + 33.5i·5-s − 447. i·6-s + 160. i·7-s + 1.44e3i·8-s + 1.97e3·9-s − 232.·10-s − 5.93e3i·11-s − 5.15e3·12-s − 1.11e3·14-s − 2.16e3i·15-s + 216.·16-s − 1.10e4·17-s + 1.37e4i·18-s + ⋯ |
L(s) = 1 | + 0.613i·2-s − 1.37·3-s + 0.623·4-s + 0.119i·5-s − 0.846i·6-s + 0.177i·7-s + 0.995i·8-s + 0.903·9-s − 0.0735·10-s − 1.34i·11-s − 0.860·12-s − 0.108·14-s − 0.165i·15-s + 0.0131·16-s − 0.545·17-s + 0.553i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.1951208612\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1951208612\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 6.93iT - 128T^{2} \) |
| 3 | \( 1 + 64.5T + 2.18e3T^{2} \) |
| 5 | \( 1 - 33.5iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 160. iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 5.93e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 1.10e4T + 4.10e8T^{2} \) |
| 19 | \( 1 - 5.32e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 6.21e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 2.48e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.36e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 + 1.84e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 2.03e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + 5.32e5T + 2.71e11T^{2} \) |
| 47 | \( 1 - 2.87e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.37e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + 5.14e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 1.27e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 4.00e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 1.78e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + 3.26e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 6.10e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 4.96e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 5.03e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 - 1.33e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87939607238252503622461995002, −11.04267227696543718505712756525, −10.62628811389660892975840682098, −8.903574763373508045786336623847, −7.72065707097927129113549168547, −6.55255000499229356967152085109, −5.90743760282369114800761857865, −5.10757929805533291374538367010, −3.25205035311750106171456469274, −1.47071002758832592381223822614,
0.06306322134637245900103755383, 1.26881946581849785027849068562, 2.60369400992848539873172163138, 4.34463490518336322004174914691, 5.34443676119541928213572897449, 6.76360817079861157810504545463, 7.16509314235980259486323899098, 9.171773525521972674729425743566, 10.22308760910262943936908229892, 11.15866678959411019007119256335