L(s) = 1 | + 6.93i·2-s − 64.5·3-s + 79.8·4-s + 33.5i·5-s − 447. i·6-s + 160. i·7-s + 1.44e3i·8-s + 1.97e3·9-s − 232.·10-s − 5.93e3i·11-s − 5.15e3·12-s − 1.11e3·14-s − 2.16e3i·15-s + 216.·16-s − 1.10e4·17-s + 1.37e4i·18-s + ⋯ |
L(s) = 1 | + 0.613i·2-s − 1.37·3-s + 0.623·4-s + 0.119i·5-s − 0.846i·6-s + 0.177i·7-s + 0.995i·8-s + 0.903·9-s − 0.0735·10-s − 1.34i·11-s − 0.860·12-s − 0.108·14-s − 0.165i·15-s + 0.0131·16-s − 0.545·17-s + 0.553i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.691+0.722i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(−0.691+0.722i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.691+0.722i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), −0.691+0.722i)
|
Particular Values
L(4) |
≈ |
0.1951208612 |
L(21) |
≈ |
0.1951208612 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−6.93iT−128T2 |
| 3 | 1+64.5T+2.18e3T2 |
| 5 | 1−33.5iT−7.81e4T2 |
| 7 | 1−160.iT−8.23e5T2 |
| 11 | 1+5.93e3iT−1.94e7T2 |
| 17 | 1+1.10e4T+4.10e8T2 |
| 19 | 1−5.32e4iT−8.93e8T2 |
| 23 | 1−6.21e4T+3.40e9T2 |
| 29 | 1+2.48e5T+1.72e10T2 |
| 31 | 1−1.36e5iT−2.75e10T2 |
| 37 | 1+1.84e5iT−9.49e10T2 |
| 41 | 1−2.03e5iT−1.94e11T2 |
| 43 | 1+5.32e5T+2.71e11T2 |
| 47 | 1−2.87e5iT−5.06e11T2 |
| 53 | 1+1.37e6T+1.17e12T2 |
| 59 | 1+5.14e5iT−2.48e12T2 |
| 61 | 1+1.27e6T+3.14e12T2 |
| 67 | 1+4.00e6iT−6.06e12T2 |
| 71 | 1+1.78e6iT−9.09e12T2 |
| 73 | 1+3.26e6iT−1.10e13T2 |
| 79 | 1+6.10e6T+1.92e13T2 |
| 83 | 1+4.96e6iT−2.71e13T2 |
| 89 | 1+5.03e6iT−4.42e13T2 |
| 97 | 1−1.33e7iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87939607238252503622461995002, −11.04267227696543718505712756525, −10.62628811389660892975840682098, −8.903574763373508045786336623847, −7.72065707097927129113549168547, −6.55255000499229356967152085109, −5.90743760282369114800761857865, −5.10757929805533291374538367010, −3.25205035311750106171456469274, −1.47071002758832592381223822614,
0.06306322134637245900103755383, 1.26881946581849785027849068562, 2.60369400992848539873172163138, 4.34463490518336322004174914691, 5.34443676119541928213572897449, 6.76360817079861157810504545463, 7.16509314235980259486323899098, 9.171773525521972674729425743566, 10.22308760910262943936908229892, 11.15866678959411019007119256335