L(s) = 1 | + 19.6i·2-s − 72.4·3-s − 257.·4-s − 413. i·5-s − 1.42e3i·6-s + 1.00e3i·7-s − 2.53e3i·8-s + 3.06e3·9-s + 8.11e3·10-s + 3.48e3i·11-s + 1.86e4·12-s − 1.97e4·14-s + 2.99e4i·15-s + 1.68e4·16-s − 6.15e3·17-s + 6.01e4i·18-s + ⋯ |
L(s) = 1 | + 1.73i·2-s − 1.54·3-s − 2.00·4-s − 1.48i·5-s − 2.68i·6-s + 1.10i·7-s − 1.74i·8-s + 1.40·9-s + 2.56·10-s + 0.788i·11-s + 3.11·12-s − 1.92·14-s + 2.29i·15-s + 1.02·16-s − 0.303·17-s + 2.43i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.246 + 0.969i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.246 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.3473984146\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3473984146\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 - 19.6iT - 128T^{2} \) |
| 3 | \( 1 + 72.4T + 2.18e3T^{2} \) |
| 5 | \( 1 + 413. iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 1.00e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.48e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 6.15e3T + 4.10e8T^{2} \) |
| 19 | \( 1 - 4.14e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 6.31e4T + 3.40e9T^{2} \) |
| 29 | \( 1 - 7.51e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.33e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 1.71e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 7.47e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 1.87e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 2.26e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.34e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + 2.50e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 5.09e5T + 3.14e12T^{2} \) |
| 67 | \( 1 - 4.07e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 2.56e5iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 5.38e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 5.18e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 5.32e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 8.69e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 3.76e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51093962649296178477959669427, −11.58321521563468076732969835301, −9.906040506655325032015727267893, −8.917579321960762068162349682698, −8.070471818271077788097263058812, −6.71842351885329967917528104719, −5.85375815146812132258733447973, −5.09738863687875403514159850001, −4.58678126790499134535816905482, −1.25200992463072740043971154339,
0.16546893688342005974362134973, 0.911361078239831954019097088255, 2.61787490388716319399267259029, 3.73988974833626095740925269069, 4.88079537785908184590519504944, 6.36028528516263733370021909967, 7.26314566552125032027356397042, 9.268023804459677606836722670634, 10.55488992558382464989946519330, 10.82537748264663546341752192524