L(s) = 1 | + 19.6i·2-s − 72.4·3-s − 257.·4-s − 413. i·5-s − 1.42e3i·6-s + 1.00e3i·7-s − 2.53e3i·8-s + 3.06e3·9-s + 8.11e3·10-s + 3.48e3i·11-s + 1.86e4·12-s − 1.97e4·14-s + 2.99e4i·15-s + 1.68e4·16-s − 6.15e3·17-s + 6.01e4i·18-s + ⋯ |
L(s) = 1 | + 1.73i·2-s − 1.54·3-s − 2.00·4-s − 1.48i·5-s − 2.68i·6-s + 1.10i·7-s − 1.74i·8-s + 1.40·9-s + 2.56·10-s + 0.788i·11-s + 3.11·12-s − 1.92·14-s + 2.29i·15-s + 1.02·16-s − 0.303·17-s + 2.43i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.246+0.969i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(0.246+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.246+0.969i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), 0.246+0.969i)
|
Particular Values
L(4) |
≈ |
0.3473984146 |
L(21) |
≈ |
0.3473984146 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1−19.6iT−128T2 |
| 3 | 1+72.4T+2.18e3T2 |
| 5 | 1+413.iT−7.81e4T2 |
| 7 | 1−1.00e3iT−8.23e5T2 |
| 11 | 1−3.48e3iT−1.94e7T2 |
| 17 | 1+6.15e3T+4.10e8T2 |
| 19 | 1−4.14e4iT−8.93e8T2 |
| 23 | 1−6.31e4T+3.40e9T2 |
| 29 | 1−7.51e4T+1.72e10T2 |
| 31 | 1−1.33e5iT−2.75e10T2 |
| 37 | 1−1.71e5iT−9.49e10T2 |
| 41 | 1−7.47e5iT−1.94e11T2 |
| 43 | 1−1.87e5T+2.71e11T2 |
| 47 | 1+2.26e5iT−5.06e11T2 |
| 53 | 1+1.34e6T+1.17e12T2 |
| 59 | 1+2.50e6iT−2.48e12T2 |
| 61 | 1+5.09e5T+3.14e12T2 |
| 67 | 1−4.07e6iT−6.06e12T2 |
| 71 | 1−2.56e5iT−9.09e12T2 |
| 73 | 1−5.38e6iT−1.10e13T2 |
| 79 | 1−5.18e6T+1.92e13T2 |
| 83 | 1+5.32e6iT−2.71e13T2 |
| 89 | 1+8.69e6iT−4.42e13T2 |
| 97 | 1+3.76e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.51093962649296178477959669427, −11.58321521563468076732969835301, −9.906040506655325032015727267893, −8.917579321960762068162349682698, −8.070471818271077788097263058812, −6.71842351885329967917528104719, −5.85375815146812132258733447973, −5.09738863687875403514159850001, −4.58678126790499134535816905482, −1.25200992463072740043971154339,
0.16546893688342005974362134973, 0.911361078239831954019097088255, 2.61787490388716319399267259029, 3.73988974833626095740925269069, 4.88079537785908184590519504944, 6.36028528516263733370021909967, 7.26314566552125032027356397042, 9.268023804459677606836722670634, 10.55488992558382464989946519330, 10.82537748264663546341752192524