L(s) = 1 | − 15.0i·2-s − 85.3·3-s − 97.6·4-s − 439. i·5-s + 1.28e3i·6-s − 536. i·7-s − 455. i·8-s + 5.10e3·9-s − 6.60e3·10-s − 2.99e3i·11-s + 8.34e3·12-s − 8.06e3·14-s + 3.75e4i·15-s − 1.93e4·16-s − 2.23e4·17-s − 7.66e4i·18-s + ⋯ |
L(s) = 1 | − 1.32i·2-s − 1.82·3-s − 0.763·4-s − 1.57i·5-s + 2.42i·6-s − 0.591i·7-s − 0.314i·8-s + 2.33·9-s − 2.08·10-s − 0.678i·11-s + 1.39·12-s − 0.785·14-s + 2.87i·15-s − 1.18·16-s − 1.10·17-s − 3.09i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0304i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0304i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.3858914497\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3858914497\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + 15.0iT - 128T^{2} \) |
| 3 | \( 1 + 85.3T + 2.18e3T^{2} \) |
| 5 | \( 1 + 439. iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 536. iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 2.99e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 2.23e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 1.80e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 3.57e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 1.13e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.65e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 + 4.40e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 1.06e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 5.08e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 3.23e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.34e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + 1.16e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 1.37e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 1.02e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 4.68e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 4.77e5iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 6.05e5T + 1.92e13T^{2} \) |
| 83 | \( 1 + 5.20e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 1.17e7iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 3.49e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94277640282271663087547637869, −9.852180863242144516227465331504, −8.845927545162082608670446003578, −7.08567197430881459887649379923, −5.82424203843503146983173569017, −4.74836820983702235870767300718, −4.00830495919832284476172376660, −1.73285787175176946316253414307, −0.71017144402759382569959113449, −0.19797295310384042410238860145,
2.16007091279279199839598599737, 4.33049543879672183909121777143, 5.57847306042422706404608565993, 6.28472283158591525166154744786, 6.87989611399538890827773523328, 7.76272550402683444289883621004, 9.605031092237755392709386158289, 10.71776518989388986335539119898, 11.34912218504964582832214189494, 12.22585326721736472723024652982