L(s) = 1 | − 15.0i·2-s − 85.3·3-s − 97.6·4-s − 439. i·5-s + 1.28e3i·6-s − 536. i·7-s − 455. i·8-s + 5.10e3·9-s − 6.60e3·10-s − 2.99e3i·11-s + 8.34e3·12-s − 8.06e3·14-s + 3.75e4i·15-s − 1.93e4·16-s − 2.23e4·17-s − 7.66e4i·18-s + ⋯ |
L(s) = 1 | − 1.32i·2-s − 1.82·3-s − 0.763·4-s − 1.57i·5-s + 2.42i·6-s − 0.591i·7-s − 0.314i·8-s + 2.33·9-s − 2.08·10-s − 0.678i·11-s + 1.39·12-s − 0.785·14-s + 2.87i·15-s − 1.18·16-s − 1.10·17-s − 3.09i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.999+0.0304i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(0.999+0.0304i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.999+0.0304i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), 0.999+0.0304i)
|
Particular Values
L(4) |
≈ |
0.3858914497 |
L(21) |
≈ |
0.3858914497 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+15.0iT−128T2 |
| 3 | 1+85.3T+2.18e3T2 |
| 5 | 1+439.iT−7.81e4T2 |
| 7 | 1+536.iT−8.23e5T2 |
| 11 | 1+2.99e3iT−1.94e7T2 |
| 17 | 1+2.23e4T+4.10e8T2 |
| 19 | 1+1.80e4iT−8.93e8T2 |
| 23 | 1+3.57e4T+3.40e9T2 |
| 29 | 1+1.13e5T+1.72e10T2 |
| 31 | 1−1.65e5iT−2.75e10T2 |
| 37 | 1+4.40e5iT−9.49e10T2 |
| 41 | 1−1.06e5iT−1.94e11T2 |
| 43 | 1−5.08e5T+2.71e11T2 |
| 47 | 1+3.23e5iT−5.06e11T2 |
| 53 | 1+1.34e6T+1.17e12T2 |
| 59 | 1+1.16e6iT−2.48e12T2 |
| 61 | 1−1.37e6T+3.14e12T2 |
| 67 | 1+1.02e6iT−6.06e12T2 |
| 71 | 1−4.68e6iT−9.09e12T2 |
| 73 | 1−4.77e5iT−1.10e13T2 |
| 79 | 1+6.05e5T+1.92e13T2 |
| 83 | 1+5.20e6iT−2.71e13T2 |
| 89 | 1+1.17e7iT−4.42e13T2 |
| 97 | 1+3.49e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94277640282271663087547637869, −9.852180863242144516227465331504, −8.845927545162082608670446003578, −7.08567197430881459887649379923, −5.82424203843503146983173569017, −4.74836820983702235870767300718, −4.00830495919832284476172376660, −1.73285787175176946316253414307, −0.71017144402759382569959113449, −0.19797295310384042410238860145,
2.16007091279279199839598599737, 4.33049543879672183909121777143, 5.57847306042422706404608565993, 6.28472283158591525166154744786, 6.87989611399538890827773523328, 7.76272550402683444289883621004, 9.605031092237755392709386158289, 10.71776518989388986335539119898, 11.34912218504964582832214189494, 12.22585326721736472723024652982