Properties

Label 2-170-1.1-c1-0-3
Degree $2$
Conductor $170$
Sign $1$
Analytic cond. $1.35745$
Root an. cond. $1.16509$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 5-s − 3·6-s + 2·7-s − 8-s + 6·9-s + 10-s − 4·11-s + 3·12-s − 3·13-s − 2·14-s − 3·15-s + 16-s + 17-s − 6·18-s + 3·19-s − 20-s + 6·21-s + 4·22-s − 6·23-s − 3·24-s + 25-s + 3·26-s + 9·27-s + 2·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 0.447·5-s − 1.22·6-s + 0.755·7-s − 0.353·8-s + 2·9-s + 0.316·10-s − 1.20·11-s + 0.866·12-s − 0.832·13-s − 0.534·14-s − 0.774·15-s + 1/4·16-s + 0.242·17-s − 1.41·18-s + 0.688·19-s − 0.223·20-s + 1.30·21-s + 0.852·22-s − 1.25·23-s − 0.612·24-s + 1/5·25-s + 0.588·26-s + 1.73·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(170\)    =    \(2 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(1.35745\)
Root analytic conductor: \(1.16509\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 170,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.336025674\)
\(L(\frac12)\) \(\approx\) \(1.336025674\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 13 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83373639226606959528283639348, −11.77392021354054025159681104411, −10.36366338935225999926837372006, −9.673175371223344610087496327723, −8.338175486309026415938497793980, −8.047148785250349636560357968225, −7.12227398289357983628483830063, −4.92015064777793909582073169694, −3.29460314858197068359451412690, −2.08881038737404835754425957871, 2.08881038737404835754425957871, 3.29460314858197068359451412690, 4.92015064777793909582073169694, 7.12227398289357983628483830063, 8.047148785250349636560357968225, 8.338175486309026415938497793980, 9.673175371223344610087496327723, 10.36366338935225999926837372006, 11.77392021354054025159681104411, 12.83373639226606959528283639348

Graph of the $Z$-function along the critical line