L(s) = 1 | + (0.382 + 0.923i)2-s + (−1.16 − 0.776i)3-s + (−0.707 + 0.707i)4-s + (1.31 − 1.80i)5-s + (0.272 − 1.37i)6-s + (3.77 + 0.749i)7-s + (−0.923 − 0.382i)8-s + (−0.399 − 0.965i)9-s + (2.17 + 0.524i)10-s + (3.05 + 0.606i)11-s + (1.37 − 0.272i)12-s + 4.47i·13-s + (0.749 + 3.77i)14-s + (−2.93 + 1.07i)15-s − i·16-s + (−3.21 − 2.57i)17-s + ⋯ |
L(s) = 1 | + (0.270 + 0.653i)2-s + (−0.671 − 0.448i)3-s + (−0.353 + 0.353i)4-s + (0.588 − 0.808i)5-s + (0.111 − 0.559i)6-s + (1.42 + 0.283i)7-s + (−0.326 − 0.135i)8-s + (−0.133 − 0.321i)9-s + (0.687 + 0.165i)10-s + (0.919 + 0.182i)11-s + (0.395 − 0.0787i)12-s + 1.24i·13-s + (0.200 + 1.00i)14-s + (−0.757 + 0.278i)15-s − 0.250i·16-s + (−0.780 − 0.625i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.984−0.172i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.984−0.172i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.984−0.172i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(147,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.984−0.172i)
|
Particular Values
L(1) |
≈ |
1.24484+0.108253i |
L(21) |
≈ |
1.24484+0.108253i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.382−0.923i)T |
| 5 | 1+(−1.31+1.80i)T |
| 17 | 1+(3.21+2.57i)T |
good | 3 | 1+(1.16+0.776i)T+(1.14+2.77i)T2 |
| 7 | 1+(−3.77−0.749i)T+(6.46+2.67i)T2 |
| 11 | 1+(−3.05−0.606i)T+(10.1+4.20i)T2 |
| 13 | 1−4.47iT−13T2 |
| 19 | 1+(−1.25+3.02i)T+(−13.4−13.4i)T2 |
| 23 | 1+(−1.36−2.05i)T+(−8.80+21.2i)T2 |
| 29 | 1+(5.13+3.42i)T+(11.0+26.7i)T2 |
| 31 | 1+(6.04−1.20i)T+(28.6−11.8i)T2 |
| 37 | 1+(4.21−6.31i)T+(−14.1−34.1i)T2 |
| 41 | 1+(−1.67+1.12i)T+(15.6−37.8i)T2 |
| 43 | 1+(2.41−5.82i)T+(−30.4−30.4i)T2 |
| 47 | 1−9.31T+47T2 |
| 53 | 1+(11.5−4.76i)T+(37.4−37.4i)T2 |
| 59 | 1+(−4.66+1.93i)T+(41.7−41.7i)T2 |
| 61 | 1+(1.54+2.31i)T+(−23.3+56.3i)T2 |
| 67 | 1+(6.06−6.06i)T−67iT2 |
| 71 | 1+(−0.137−0.691i)T+(−65.5+27.1i)T2 |
| 73 | 1+(−1.32+0.264i)T+(67.4−27.9i)T2 |
| 79 | 1+(2.06−10.3i)T+(−72.9−30.2i)T2 |
| 83 | 1+(5.12+12.3i)T+(−58.6+58.6i)T2 |
| 89 | 1+(−4.33+4.33i)T−89iT2 |
| 97 | 1+(−7.72+1.53i)T+(89.6−37.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82385712665609443874991239534, −11.69888599133680337699161212399, −11.40827613200954908984374391209, −9.276455225601302613081156052461, −8.861397961493905142803514296169, −7.36011873737450341946109705452, −6.36415121534161056412341759335, −5.27171219587902343019615333107, −4.40036726873754081214286906879, −1.61899804794579686914599747989,
1.90874059989789529884476927391, 3.75870799482099279170197064470, 5.12143485841678369751492796065, 5.94586182563819022704577205493, 7.54250215492414513264874988622, 8.869860591433497376091453437374, 10.28129154042894722854322768937, 10.89030659917989512114087161783, 11.33777290991688866196263166533, 12.61460458820042375069386845277