L(s) = 1 | + (0.382 + 0.923i)2-s + (−1.16 − 0.776i)3-s + (−0.707 + 0.707i)4-s + (1.31 − 1.80i)5-s + (0.272 − 1.37i)6-s + (3.77 + 0.749i)7-s + (−0.923 − 0.382i)8-s + (−0.399 − 0.965i)9-s + (2.17 + 0.524i)10-s + (3.05 + 0.606i)11-s + (1.37 − 0.272i)12-s + 4.47i·13-s + (0.749 + 3.77i)14-s + (−2.93 + 1.07i)15-s − i·16-s + (−3.21 − 2.57i)17-s + ⋯ |
L(s) = 1 | + (0.270 + 0.653i)2-s + (−0.671 − 0.448i)3-s + (−0.353 + 0.353i)4-s + (0.588 − 0.808i)5-s + (0.111 − 0.559i)6-s + (1.42 + 0.283i)7-s + (−0.326 − 0.135i)8-s + (−0.133 − 0.321i)9-s + (0.687 + 0.165i)10-s + (0.919 + 0.182i)11-s + (0.395 − 0.0787i)12-s + 1.24i·13-s + (0.200 + 1.00i)14-s + (−0.757 + 0.278i)15-s − 0.250i·16-s + (−0.780 − 0.625i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.172i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.172i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24484 + 0.108253i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24484 + 0.108253i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 0.923i)T \) |
| 5 | \( 1 + (-1.31 + 1.80i)T \) |
| 17 | \( 1 + (3.21 + 2.57i)T \) |
good | 3 | \( 1 + (1.16 + 0.776i)T + (1.14 + 2.77i)T^{2} \) |
| 7 | \( 1 + (-3.77 - 0.749i)T + (6.46 + 2.67i)T^{2} \) |
| 11 | \( 1 + (-3.05 - 0.606i)T + (10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 - 4.47iT - 13T^{2} \) |
| 19 | \( 1 + (-1.25 + 3.02i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-1.36 - 2.05i)T + (-8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (5.13 + 3.42i)T + (11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + (6.04 - 1.20i)T + (28.6 - 11.8i)T^{2} \) |
| 37 | \( 1 + (4.21 - 6.31i)T + (-14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-1.67 + 1.12i)T + (15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (2.41 - 5.82i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 9.31T + 47T^{2} \) |
| 53 | \( 1 + (11.5 - 4.76i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.66 + 1.93i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (1.54 + 2.31i)T + (-23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + (6.06 - 6.06i)T - 67iT^{2} \) |
| 71 | \( 1 + (-0.137 - 0.691i)T + (-65.5 + 27.1i)T^{2} \) |
| 73 | \( 1 + (-1.32 + 0.264i)T + (67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (2.06 - 10.3i)T + (-72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (5.12 + 12.3i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-4.33 + 4.33i)T - 89iT^{2} \) |
| 97 | \( 1 + (-7.72 + 1.53i)T + (89.6 - 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82385712665609443874991239534, −11.69888599133680337699161212399, −11.40827613200954908984374391209, −9.276455225601302613081156052461, −8.861397961493905142803514296169, −7.36011873737450341946109705452, −6.36415121534161056412341759335, −5.27171219587902343019615333107, −4.40036726873754081214286906879, −1.61899804794579686914599747989,
1.90874059989789529884476927391, 3.75870799482099279170197064470, 5.12143485841678369751492796065, 5.94586182563819022704577205493, 7.54250215492414513264874988622, 8.869860591433497376091453437374, 10.28129154042894722854322768937, 10.89030659917989512114087161783, 11.33777290991688866196263166533, 12.61460458820042375069386845277