L(s) = 1 | + (0.923 − 0.382i)2-s + (2.22 − 0.442i)3-s + (0.707 − 0.707i)4-s + (−2.23 + 0.151i)5-s + (1.88 − 1.26i)6-s + (−1.29 − 1.93i)7-s + (0.382 − 0.923i)8-s + (1.98 − 0.820i)9-s + (−2.00 + 0.993i)10-s + (1.86 + 2.78i)11-s + (1.26 − 1.88i)12-s + 4.73i·13-s + (−1.93 − 1.29i)14-s + (−4.89 + 1.32i)15-s − i·16-s + (−2.38 + 3.36i)17-s + ⋯ |
L(s) = 1 | + (0.653 − 0.270i)2-s + (1.28 − 0.255i)3-s + (0.353 − 0.353i)4-s + (−0.997 + 0.0677i)5-s + (0.769 − 0.514i)6-s + (−0.488 − 0.731i)7-s + (0.135 − 0.326i)8-s + (0.660 − 0.273i)9-s + (−0.633 + 0.314i)10-s + (0.561 + 0.840i)11-s + (0.363 − 0.544i)12-s + 1.31i·13-s + (−0.517 − 0.345i)14-s + (−1.26 + 0.341i)15-s − 0.250i·16-s + (−0.578 + 0.815i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.809 + 0.587i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.809 + 0.587i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84165 - 0.598368i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84165 - 0.598368i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 + 0.382i)T \) |
| 5 | \( 1 + (2.23 - 0.151i)T \) |
| 17 | \( 1 + (2.38 - 3.36i)T \) |
good | 3 | \( 1 + (-2.22 + 0.442i)T + (2.77 - 1.14i)T^{2} \) |
| 7 | \( 1 + (1.29 + 1.93i)T + (-2.67 + 6.46i)T^{2} \) |
| 11 | \( 1 + (-1.86 - 2.78i)T + (-4.20 + 10.1i)T^{2} \) |
| 13 | \( 1 - 4.73iT - 13T^{2} \) |
| 19 | \( 1 + (0.786 + 0.325i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-0.820 + 4.12i)T + (-21.2 - 8.80i)T^{2} \) |
| 29 | \( 1 + (3.83 - 0.762i)T + (26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + (-4.45 + 6.66i)T + (-11.8 - 28.6i)T^{2} \) |
| 37 | \( 1 + (1.97 + 9.93i)T + (-34.1 + 14.1i)T^{2} \) |
| 41 | \( 1 + (0.472 + 0.0940i)T + (37.8 + 15.6i)T^{2} \) |
| 43 | \( 1 + (1.69 + 0.702i)T + (30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 6.52T + 47T^{2} \) |
| 53 | \( 1 + (1.33 + 3.22i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-5.52 - 13.3i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (1.17 - 5.90i)T + (-56.3 - 23.3i)T^{2} \) |
| 67 | \( 1 + (-0.912 + 0.912i)T - 67iT^{2} \) |
| 71 | \( 1 + (-10.9 - 7.33i)T + (27.1 + 65.5i)T^{2} \) |
| 73 | \( 1 + (-6.77 + 10.1i)T + (-27.9 - 67.4i)T^{2} \) |
| 79 | \( 1 + (6.77 - 4.52i)T + (30.2 - 72.9i)T^{2} \) |
| 83 | \( 1 + (-8.98 + 3.72i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.75 + 2.75i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5.10 + 7.64i)T + (-37.1 - 89.6i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.85857313168255122028732215247, −11.87723548467617622600407286098, −10.83826517501801376305601339019, −9.553983861690429916709552052481, −8.569783594700855363556149286097, −7.35439135503079463903444302565, −6.63876437114795644422938866588, −4.30068144099397489002780006071, −3.76015925729211120159307257457, −2.17161809543178633388177045178,
2.97084625111728967830771443197, 3.53464645156611179257062771608, 5.09550115874366027846193529090, 6.57980643998744719428883760454, 7.947502380965745963085479806865, 8.545152286351369513032897564569, 9.569909543159726963229556606200, 11.12554260362077296909596802253, 12.05144162684747411653747677642, 13.06949243232466328623981461422