L(s) = 1 | + (0.923 + 0.382i)2-s + (0.0811 + 0.0161i)3-s + (0.707 + 0.707i)4-s + (1.07 + 1.96i)5-s + (0.0688 + 0.0459i)6-s + (0.143 − 0.214i)7-s + (0.382 + 0.923i)8-s + (−2.76 − 1.14i)9-s + (0.240 + 2.22i)10-s + (0.818 − 1.22i)11-s + (0.0459 + 0.0688i)12-s − 0.161i·13-s + (0.214 − 0.143i)14-s + (0.0553 + 0.176i)15-s + i·16-s + (4.08 − 0.561i)17-s + ⋯ |
L(s) = 1 | + (0.653 + 0.270i)2-s + (0.0468 + 0.00932i)3-s + (0.353 + 0.353i)4-s + (0.479 + 0.877i)5-s + (0.0280 + 0.0187i)6-s + (0.0541 − 0.0810i)7-s + (0.135 + 0.326i)8-s + (−0.921 − 0.381i)9-s + (0.0759 + 0.703i)10-s + (0.246 − 0.369i)11-s + (0.0132 + 0.0198i)12-s − 0.0448i·13-s + (0.0573 − 0.0382i)14-s + (0.0143 + 0.0456i)15-s + 0.250i·16-s + (0.990 − 0.136i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.754−0.656i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.754−0.656i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.754−0.656i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.754−0.656i)
|
Particular Values
L(1) |
≈ |
1.57039+0.588109i |
L(21) |
≈ |
1.57039+0.588109i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.923−0.382i)T |
| 5 | 1+(−1.07−1.96i)T |
| 17 | 1+(−4.08+0.561i)T |
good | 3 | 1+(−0.0811−0.0161i)T+(2.77+1.14i)T2 |
| 7 | 1+(−0.143+0.214i)T+(−2.67−6.46i)T2 |
| 11 | 1+(−0.818+1.22i)T+(−4.20−10.1i)T2 |
| 13 | 1+0.161iT−13T2 |
| 19 | 1+(1.05−0.436i)T+(13.4−13.4i)T2 |
| 23 | 1+(1.45+7.32i)T+(−21.2+8.80i)T2 |
| 29 | 1+(5.25+1.04i)T+(26.7+11.0i)T2 |
| 31 | 1+(4.63+6.94i)T+(−11.8+28.6i)T2 |
| 37 | 1+(1.08−5.47i)T+(−34.1−14.1i)T2 |
| 41 | 1+(5.60−1.11i)T+(37.8−15.6i)T2 |
| 43 | 1+(−1.92+0.798i)T+(30.4−30.4i)T2 |
| 47 | 1−9.14T+47T2 |
| 53 | 1+(−0.350+0.845i)T+(−37.4−37.4i)T2 |
| 59 | 1+(−0.837+2.02i)T+(−41.7−41.7i)T2 |
| 61 | 1+(−0.778−3.91i)T+(−56.3+23.3i)T2 |
| 67 | 1+(−8.09−8.09i)T+67iT2 |
| 71 | 1+(8.03−5.36i)T+(27.1−65.5i)T2 |
| 73 | 1+(−1.72−2.58i)T+(−27.9+67.4i)T2 |
| 79 | 1+(0.595+0.398i)T+(30.2+72.9i)T2 |
| 83 | 1+(−2.66−1.10i)T+(58.6+58.6i)T2 |
| 89 | 1+(9.97+9.97i)T+89iT2 |
| 97 | 1+(1.95+2.93i)T+(−37.1+89.6i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.03398561125957398890096673319, −11.89267578175362794338725952946, −11.07091632680718191277091425365, −10.01207075477229272403439262529, −8.719995640178670499532041978174, −7.49730741372512207875660219250, −6.30694149435017943742716419121, −5.58179527268828560091948486381, −3.80568486617153211652679354691, −2.59821780960171449969443868224,
1.86049610085552615679872933456, 3.61563774823300741128883955328, 5.17220309507120005612337045854, 5.78253885460971068363643655080, 7.41675749926132543230900173441, 8.708563918699751308042904124857, 9.650861939133060357279267136556, 10.82976966977332231385188914061, 11.91031060327337250396807268261, 12.61935039298411868153637265897