L(s) = 1 | + (0.923 + 0.382i)2-s + (0.0811 + 0.0161i)3-s + (0.707 + 0.707i)4-s + (1.07 + 1.96i)5-s + (0.0688 + 0.0459i)6-s + (0.143 − 0.214i)7-s + (0.382 + 0.923i)8-s + (−2.76 − 1.14i)9-s + (0.240 + 2.22i)10-s + (0.818 − 1.22i)11-s + (0.0459 + 0.0688i)12-s − 0.161i·13-s + (0.214 − 0.143i)14-s + (0.0553 + 0.176i)15-s + i·16-s + (4.08 − 0.561i)17-s + ⋯ |
L(s) = 1 | + (0.653 + 0.270i)2-s + (0.0468 + 0.00932i)3-s + (0.353 + 0.353i)4-s + (0.479 + 0.877i)5-s + (0.0280 + 0.0187i)6-s + (0.0541 − 0.0810i)7-s + (0.135 + 0.326i)8-s + (−0.921 − 0.381i)9-s + (0.0759 + 0.703i)10-s + (0.246 − 0.369i)11-s + (0.0132 + 0.0198i)12-s − 0.0448i·13-s + (0.0573 − 0.0382i)14-s + (0.0143 + 0.0456i)15-s + 0.250i·16-s + (0.990 − 0.136i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.754 - 0.656i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.754 - 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57039 + 0.588109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57039 + 0.588109i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 - 0.382i)T \) |
| 5 | \( 1 + (-1.07 - 1.96i)T \) |
| 17 | \( 1 + (-4.08 + 0.561i)T \) |
good | 3 | \( 1 + (-0.0811 - 0.0161i)T + (2.77 + 1.14i)T^{2} \) |
| 7 | \( 1 + (-0.143 + 0.214i)T + (-2.67 - 6.46i)T^{2} \) |
| 11 | \( 1 + (-0.818 + 1.22i)T + (-4.20 - 10.1i)T^{2} \) |
| 13 | \( 1 + 0.161iT - 13T^{2} \) |
| 19 | \( 1 + (1.05 - 0.436i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (1.45 + 7.32i)T + (-21.2 + 8.80i)T^{2} \) |
| 29 | \( 1 + (5.25 + 1.04i)T + (26.7 + 11.0i)T^{2} \) |
| 31 | \( 1 + (4.63 + 6.94i)T + (-11.8 + 28.6i)T^{2} \) |
| 37 | \( 1 + (1.08 - 5.47i)T + (-34.1 - 14.1i)T^{2} \) |
| 41 | \( 1 + (5.60 - 1.11i)T + (37.8 - 15.6i)T^{2} \) |
| 43 | \( 1 + (-1.92 + 0.798i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 9.14T + 47T^{2} \) |
| 53 | \( 1 + (-0.350 + 0.845i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-0.837 + 2.02i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-0.778 - 3.91i)T + (-56.3 + 23.3i)T^{2} \) |
| 67 | \( 1 + (-8.09 - 8.09i)T + 67iT^{2} \) |
| 71 | \( 1 + (8.03 - 5.36i)T + (27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (-1.72 - 2.58i)T + (-27.9 + 67.4i)T^{2} \) |
| 79 | \( 1 + (0.595 + 0.398i)T + (30.2 + 72.9i)T^{2} \) |
| 83 | \( 1 + (-2.66 - 1.10i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (9.97 + 9.97i)T + 89iT^{2} \) |
| 97 | \( 1 + (1.95 + 2.93i)T + (-37.1 + 89.6i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03398561125957398890096673319, −11.89267578175362794338725952946, −11.07091632680718191277091425365, −10.01207075477229272403439262529, −8.719995640178670499532041978174, −7.49730741372512207875660219250, −6.30694149435017943742716419121, −5.58179527268828560091948486381, −3.80568486617153211652679354691, −2.59821780960171449969443868224,
1.86049610085552615679872933456, 3.61563774823300741128883955328, 5.17220309507120005612337045854, 5.78253885460971068363643655080, 7.41675749926132543230900173441, 8.708563918699751308042904124857, 9.650861939133060357279267136556, 10.82976966977332231385188914061, 11.91031060327337250396807268261, 12.61935039298411868153637265897