L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.587 + 0.809i)8-s + (−0.951 + 0.309i)9-s + (0.951 − 0.309i)10-s + (0.363 + 1.11i)13-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s − 0.999·18-s + 0.999·20-s + (0.309 − 0.951i)25-s + 1.17i·26-s + (0.142 + 0.896i)29-s + i·32-s + ⋯ |
L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.587 + 0.809i)8-s + (−0.951 + 0.309i)9-s + (0.951 − 0.309i)10-s + (0.363 + 1.11i)13-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s − 0.999·18-s + 0.999·20-s + (0.309 − 0.951i)25-s + 1.17i·26-s + (0.142 + 0.896i)29-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.862 - 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.862 - 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.178608418\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.178608418\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.951 - 0.309i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (0.309 + 0.951i)T \) |
good | 3 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 13 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 29 | \( 1 + (-0.142 - 0.896i)T + (-0.951 + 0.309i)T^{2} \) |
| 31 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 37 | \( 1 + (-0.809 + 1.58i)T + (-0.587 - 0.809i)T^{2} \) |
| 41 | \( 1 + (1.76 + 0.896i)T + (0.587 + 0.809i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.896 + 1.76i)T + (-0.587 + 0.809i)T^{2} \) |
| 67 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 73 | \( 1 + (0.278 - 0.142i)T + (0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 83 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.278 - 1.76i)T + (-0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.343007597449553080060098437759, −8.839573348371055477353546059787, −7.975160184183540512703303826268, −6.92146810719295920132731601460, −6.29311748627822302911422693490, −5.37655631530592154541727317910, −4.90386069319595101373230451012, −3.83979389728859768296722342993, −2.68568662589222422060577577307, −1.81012166213159151054660497339,
1.54229158408636676130282228954, 2.80214802724370521515956217042, 3.26181198649213658708302791762, 4.49984570788973186341281083380, 5.55600479057937034571006726346, 6.08708668275975580834125233031, 6.64253660407338528837044053857, 7.83368530234974541875017519008, 8.650708821574018866282941529601, 9.843471179915113507844852175649