L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.587 + 0.809i)8-s + (−0.951 + 0.309i)9-s + (0.951 − 0.309i)10-s + (0.363 + 1.11i)13-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s − 0.999·18-s + 0.999·20-s + (0.309 − 0.951i)25-s + 1.17i·26-s + (0.142 + 0.896i)29-s + i·32-s + ⋯ |
L(s) = 1 | + (0.951 + 0.309i)2-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)5-s + (0.587 + 0.809i)8-s + (−0.951 + 0.309i)9-s + (0.951 − 0.309i)10-s + (0.363 + 1.11i)13-s + (0.309 + 0.951i)16-s + (−0.309 − 0.951i)17-s − 0.999·18-s + 0.999·20-s + (0.309 − 0.951i)25-s + 1.17i·26-s + (0.142 + 0.896i)29-s + i·32-s + ⋯ |
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.862−0.506i)Λ(1−s)
Λ(s)=(=(1700s/2ΓC(s)L(s)(0.862−0.506i)Λ(1−s)
Degree: |
2 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.862−0.506i
|
Analytic conductor: |
0.848410 |
Root analytic conductor: |
0.921092 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1700, ( :0), 0.862−0.506i)
|
Particular Values
L(21) |
≈ |
2.178608418 |
L(21) |
≈ |
2.178608418 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.951−0.309i)T |
| 5 | 1+(−0.809+0.587i)T |
| 17 | 1+(0.309+0.951i)T |
good | 3 | 1+(0.951−0.309i)T2 |
| 7 | 1+iT2 |
| 11 | 1+(0.587−0.809i)T2 |
| 13 | 1+(−0.363−1.11i)T+(−0.809+0.587i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1+(0.587−0.809i)T2 |
| 29 | 1+(−0.142−0.896i)T+(−0.951+0.309i)T2 |
| 31 | 1+(−0.951−0.309i)T2 |
| 37 | 1+(−0.809+1.58i)T+(−0.587−0.809i)T2 |
| 41 | 1+(1.76+0.896i)T+(0.587+0.809i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.309−0.951i)T2 |
| 53 | 1+(0.690−0.951i)T+(−0.309−0.951i)T2 |
| 59 | 1+(−0.809+0.587i)T2 |
| 61 | 1+(0.896+1.76i)T+(−0.587+0.809i)T2 |
| 67 | 1+(−0.309+0.951i)T2 |
| 71 | 1+(0.951−0.309i)T2 |
| 73 | 1+(0.278−0.142i)T+(0.587−0.809i)T2 |
| 79 | 1+(−0.951+0.309i)T2 |
| 83 | 1+(0.309−0.951i)T2 |
| 89 | 1+(0.587−1.80i)T+(−0.809−0.587i)T2 |
| 97 | 1+(−0.278−1.76i)T+(−0.951+0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.343007597449553080060098437759, −8.839573348371055477353546059787, −7.975160184183540512703303826268, −6.92146810719295920132731601460, −6.29311748627822302911422693490, −5.37655631530592154541727317910, −4.90386069319595101373230451012, −3.83979389728859768296722342993, −2.68568662589222422060577577307, −1.81012166213159151054660497339,
1.54229158408636676130282228954, 2.80214802724370521515956217042, 3.26181198649213658708302791762, 4.49984570788973186341281083380, 5.55600479057937034571006726346, 6.08708668275975580834125233031, 6.64253660407338528837044053857, 7.83368530234974541875017519008, 8.650708821574018866282941529601, 9.843471179915113507844852175649