L(s) = 1 | + (−1.16 + 2.02i)2-s + (−1.72 − 2.98i)4-s + (−0.524 + 0.908i)5-s − 3.44·7-s + 3.38·8-s + (−1.22 − 2.12i)10-s − 5.71·11-s + (0.5 + 0.866i)13-s + (4.02 − 6.97i)14-s + (−0.500 + 0.866i)16-s + (1.04 − 1.81i)17-s + (1 + 4.24i)19-s + 3.61·20-s + (6.67 − 11.5i)22-s + (1.80 + 3.13i)23-s + ⋯ |
L(s) = 1 | + (−0.825 + 1.42i)2-s + (−0.862 − 1.49i)4-s + (−0.234 + 0.406i)5-s − 1.30·7-s + 1.19·8-s + (−0.387 − 0.670i)10-s − 1.72·11-s + (0.138 + 0.240i)13-s + (1.07 − 1.86i)14-s + (−0.125 + 0.216i)16-s + (0.254 − 0.440i)17-s + (0.229 + 0.973i)19-s + 0.809·20-s + (1.42 − 2.46i)22-s + (0.377 + 0.653i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.567+0.823i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(−0.567+0.823i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.567+0.823i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), −0.567+0.823i)
|
Particular Values
L(1) |
≈ |
0.105361−0.200437i |
L(21) |
≈ |
0.105361−0.200437i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(−1−4.24i)T |
good | 2 | 1+(1.16−2.02i)T+(−1−1.73i)T2 |
| 5 | 1+(0.524−0.908i)T+(−2.5−4.33i)T2 |
| 7 | 1+3.44T+7T2 |
| 11 | 1+5.71T+11T2 |
| 13 | 1+(−0.5−0.866i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.04+1.81i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−1.80−3.13i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.61+6.26i)T+(−14.5+25.1i)T2 |
| 31 | 1+9.44T+31T2 |
| 37 | 1−3.89T+37T2 |
| 41 | 1+(4.66−8.08i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.17−5.49i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−4.66−8.08i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−0.524−0.908i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.90+6.76i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.5+4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.174+0.301i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3.61+6.26i)T+(−35.5−61.4i)T2 |
| 73 | 1+(2.5−4.33i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.174−0.301i)T+(−39.5−68.4i)T2 |
| 83 | 1−11.4T+83T2 |
| 89 | 1+(2.62+4.54i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.55−2.68i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.52469750368033338418998966224, −12.72262785535506406658835968842, −11.11468805809149319121343795866, −9.927738319988938078742900261705, −9.374323007642214723034162031078, −7.945723517438357304902467071890, −7.36556683936516710509513459177, −6.23916253747487226213303530638, −5.32359514577515486715068028075, −3.20446852748645676549388394871,
0.25852575978823346909573396353, 2.53012790942622937604874157457, 3.59951872493571199716439445806, 5.37991315035471063801366666066, 7.16760463541432259765514975770, 8.475256643206997600284867986081, 9.224340233120072038634157303472, 10.37465434400901984673741307918, 10.74780540115663247756279378579, 12.14330004486223150510423024135