L(s) = 1 | + (−2.72 + 4.72i)2-s + (−10.8 − 18.8i)4-s + (−1.48 + 2.56i)5-s + 6.79·7-s + 74.7·8-s + (−8.07 − 13.9i)10-s + 51.5·11-s + (−10.0 − 17.3i)13-s + (−18.5 + 32.0i)14-s + (−116. + 202. i)16-s + (−53.3 + 92.4i)17-s + (80.5 − 19.1i)19-s + 64.2·20-s + (−140. + 243. i)22-s + (−29.6 − 51.3i)23-s + ⋯ |
L(s) = 1 | + (−0.963 + 1.66i)2-s + (−1.35 − 2.35i)4-s + (−0.132 + 0.229i)5-s + 0.366·7-s + 3.30·8-s + (−0.255 − 0.442i)10-s + 1.41·11-s + (−0.213 − 0.369i)13-s + (−0.353 + 0.612i)14-s + (−1.82 + 3.16i)16-s + (−0.761 + 1.31i)17-s + (0.972 − 0.231i)19-s + 0.718·20-s + (−1.36 + 2.35i)22-s + (−0.268 − 0.465i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.824−0.565i)Λ(4−s)
Λ(s)=(=(171s/2ΓC(s+3/2)L(s)(−0.824−0.565i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.824−0.565i
|
Analytic conductor: |
10.0893 |
Root analytic conductor: |
3.17637 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :3/2), −0.824−0.565i)
|
Particular Values
L(2) |
≈ |
0.275739+0.889781i |
L(21) |
≈ |
0.275739+0.889781i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(−80.5+19.1i)T |
good | 2 | 1+(2.72−4.72i)T+(−4−6.92i)T2 |
| 5 | 1+(1.48−2.56i)T+(−62.5−108.i)T2 |
| 7 | 1−6.79T+343T2 |
| 11 | 1−51.5T+1.33e3T2 |
| 13 | 1+(10.0+17.3i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+(53.3−92.4i)T+(−2.45e3−4.25e3i)T2 |
| 23 | 1+(29.6+51.3i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−39.6−68.7i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+158.T+2.97e4T2 |
| 37 | 1−244.T+5.06e4T2 |
| 41 | 1+(172.−298.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(−168.+291.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(−114.−198.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−324.−562.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−46.5+80.6i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−297.−514.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−494.−857.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(420.−729.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1+(−439.+760.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(172.−299.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−145.T+5.71e5T2 |
| 89 | 1+(561.+973.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(−62.5+108.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02230818236959028863887278794, −11.38120015346113178654138420598, −10.34558571471028745864139272269, −9.252506327715293232665314830113, −8.549483289459551790365261182171, −7.45428772276256967329591367719, −6.61893041788724730417752584685, −5.61158661656099611201261473702, −4.25221517515853202054770017726, −1.24258060071307823470611880751,
0.72880509463882701710982613474, 2.09703875418434453769281335494, 3.60800363650865938269405887142, 4.71479898712054053284022368080, 7.04771302046311586800898724751, 8.228236959705705733281956470111, 9.248898085270533018672133830126, 9.723807257869595596722821008500, 11.13630019789508622730284286273, 11.66569806200015461255229049360