L(s) = 1 | + (−1.71 − 2.97i)2-s + (−1.90 + 3.29i)4-s + (6.83 + 11.8i)5-s − 20.1·7-s − 14.4·8-s + (23.4 − 40.6i)10-s + 48.0·11-s + (34.8 − 60.3i)13-s + (34.6 + 59.9i)14-s + (39.9 + 69.2i)16-s + (58.9 + 102. i)17-s + (36.1 − 74.5i)19-s − 52.0·20-s + (−82.5 − 142. i)22-s + (35.0 − 60.7i)23-s + ⋯ |
L(s) = 1 | + (−0.607 − 1.05i)2-s + (−0.237 + 0.412i)4-s + (0.611 + 1.05i)5-s − 1.08·7-s − 0.636·8-s + (0.743 − 1.28i)10-s + 1.31·11-s + (0.743 − 1.28i)13-s + (0.660 + 1.14i)14-s + (0.624 + 1.08i)16-s + (0.840 + 1.45i)17-s + (0.435 − 0.899i)19-s − 0.582·20-s + (−0.799 − 1.38i)22-s + (0.317 − 0.550i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(0.373+0.927i)Λ(4−s)
Λ(s)=(=(171s/2ΓC(s+3/2)L(s)(0.373+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
0.373+0.927i
|
Analytic conductor: |
10.0893 |
Root analytic conductor: |
3.17637 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :3/2), 0.373+0.927i)
|
Particular Values
L(2) |
≈ |
1.10321−0.744744i |
L(21) |
≈ |
1.10321−0.744744i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(−36.1+74.5i)T |
good | 2 | 1+(1.71+2.97i)T+(−4+6.92i)T2 |
| 5 | 1+(−6.83−11.8i)T+(−62.5+108.i)T2 |
| 7 | 1+20.1T+343T2 |
| 11 | 1−48.0T+1.33e3T2 |
| 13 | 1+(−34.8+60.3i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+(−58.9−102.i)T+(−2.45e3+4.25e3i)T2 |
| 23 | 1+(−35.0+60.7i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−102.+177.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1−264.T+2.97e4T2 |
| 37 | 1+385.T+5.06e4T2 |
| 41 | 1+(−60.4−104.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−156.−270.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−57.5+99.6i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(186.−323.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−131.−228.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−143.+248.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−240.+417.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(17.3+30.0i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+(−352.−610.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(293.+509.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−898.T+5.71e5T2 |
| 89 | 1+(100.−174.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(7.68+13.3i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95352393208228645805676076116, −10.79228580432226042894047061703, −10.22467828627278844319932815107, −9.504729488071588750594562274163, −8.346412099360877292903494498130, −6.51468005086190392107881549210, −6.08868210405000905902987437159, −3.54833697203810099584164953864, −2.73974073881481828238017536947, −1.01221390170544198528583559843,
1.11955468102760875098848593742, 3.50024861080384308136876453922, 5.26526533291125369241331732629, 6.38237257503174641297967983373, 7.07573661852015800192471995367, 8.624424093846576690215913970304, 9.237913466832456475375901674610, 9.814285990183516911243412009448, 11.81785963745054157668606950066, 12.35061083036666766887120432125