L(s) = 1 | + (1.45 + 2.52i)2-s + (−0.241 + 0.419i)4-s + (10.1 + 17.4i)5-s − 1.64·7-s + 21.8·8-s + (−29.4 + 50.9i)10-s − 8.92·11-s + (19.6 − 34.0i)13-s + (−2.39 − 4.14i)14-s + (33.8 + 58.5i)16-s + (3.95 + 6.84i)17-s + (−42.6 + 70.9i)19-s − 9.77·20-s + (−12.9 − 22.5i)22-s + (−55.2 + 95.7i)23-s + ⋯ |
L(s) = 1 | + (0.514 + 0.891i)2-s + (−0.0302 + 0.0523i)4-s + (0.903 + 1.56i)5-s − 0.0887·7-s + 0.967·8-s + (−0.930 + 1.61i)10-s − 0.244·11-s + (0.419 − 0.726i)13-s + (−0.0456 − 0.0791i)14-s + (0.528 + 0.915i)16-s + (0.0563 + 0.0976i)17-s + (−0.515 + 0.856i)19-s − 0.109·20-s + (−0.125 − 0.218i)22-s + (−0.501 + 0.868i)23-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(−0.288−0.957i)Λ(4−s)
Λ(s)=(=(171s/2ΓC(s+3/2)L(s)(−0.288−0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
−0.288−0.957i
|
Analytic conductor: |
10.0893 |
Root analytic conductor: |
3.17637 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :3/2), −0.288−0.957i)
|
Particular Values
L(2) |
≈ |
1.63222+2.19705i |
L(21) |
≈ |
1.63222+2.19705i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(42.6−70.9i)T |
good | 2 | 1+(−1.45−2.52i)T+(−4+6.92i)T2 |
| 5 | 1+(−10.1−17.4i)T+(−62.5+108.i)T2 |
| 7 | 1+1.64T+343T2 |
| 11 | 1+8.92T+1.33e3T2 |
| 13 | 1+(−19.6+34.0i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+(−3.95−6.84i)T+(−2.45e3+4.25e3i)T2 |
| 23 | 1+(55.2−95.7i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−71.8+124.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+57.1T+2.97e4T2 |
| 37 | 1−297.T+5.06e4T2 |
| 41 | 1+(112.+194.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(163.+283.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−56.2+97.4i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−305.+529.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−368.−638.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−420.+728.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(53.2−92.1i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(−386.−669.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1+(369.+639.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(257.+446.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−618.T+5.71e5T2 |
| 89 | 1+(−62.3+107.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(349.+606.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.10691425823830010260067581962, −11.42883590543871151825895217032, −10.40316450012201399803986231678, −9.955892046849952961847127280884, −8.081754865939062311707571231266, −7.05894533382096819218646152777, −6.15752427437959787819132434123, −5.51370703314719426412116286495, −3.64536772331161202930359791299, −2.08158222208045279979520750757,
1.20071454383631981979454390394, 2.45295767510329918899264673250, 4.25323613382788632076420033518, 5.04808308950224286868258194804, 6.46146070791523680206872270116, 8.143257611804119134967492012745, 9.093535756996221316614314868427, 10.07745622574242892543056138260, 11.21955036217177469241004836275, 12.19851932679573860905790537671