L(s) = 1 | + i·2-s − 4-s + (0.539 − 2.17i)5-s − 1.07i·7-s − i·8-s + (2.17 + 0.539i)10-s − 6.34·11-s − 3.41i·13-s + 1.07·14-s + 16-s + 5.41i·17-s − 19-s + (−0.539 + 2.17i)20-s − 6.34i·22-s + 6.34i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (0.241 − 0.970i)5-s − 0.407i·7-s − 0.353i·8-s + (0.686 + 0.170i)10-s − 1.91·11-s − 0.948i·13-s + 0.288·14-s + 0.250·16-s + 1.31i·17-s − 0.229·19-s + (−0.120 + 0.485i)20-s − 1.35i·22-s + 1.32i·23-s + ⋯ |
Λ(s)=(=(1710s/2ΓC(s)L(s)(−0.970−0.241i)Λ(2−s)
Λ(s)=(=(1710s/2ΓC(s+1/2)L(s)(−0.970−0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
1710
= 2⋅32⋅5⋅19
|
Sign: |
−0.970−0.241i
|
Analytic conductor: |
13.6544 |
Root analytic conductor: |
3.69518 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1710(1369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1710, ( :1/2), −0.970−0.241i)
|
Particular Values
L(1) |
≈ |
0.3294850507 |
L(21) |
≈ |
0.3294850507 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1+(−0.539+2.17i)T |
| 19 | 1+T |
good | 7 | 1+1.07iT−7T2 |
| 11 | 1+6.34T+11T2 |
| 13 | 1+3.41iT−13T2 |
| 17 | 1−5.41iT−17T2 |
| 23 | 1−6.34iT−23T2 |
| 29 | 1+0.340T+29T2 |
| 31 | 1−1.07T+31T2 |
| 37 | 1−3.41iT−37T2 |
| 41 | 1+7.60T+41T2 |
| 43 | 1−11.1iT−43T2 |
| 47 | 1−6.34iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−0.738T+59T2 |
| 61 | 1+2.68T+61T2 |
| 67 | 1−2.83iT−67T2 |
| 71 | 1−2.83T+71T2 |
| 73 | 1+6.83iT−73T2 |
| 79 | 1−1.07T+79T2 |
| 83 | 1−0.894iT−83T2 |
| 89 | 1−6.92T+89T2 |
| 97 | 1+3.65iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.677032529712557563673202580562, −8.670691663987296803452966326415, −7.85454469725372450049387134052, −7.76909705346316116099607958637, −6.34437325228248525893757697690, −5.54539252209782841888999062270, −5.05096850719533793167359295554, −4.07471786719990899263776790590, −2.89080992944744505144796786435, −1.38079421182201414411848402703,
0.12179180070479452303132482089, 2.26031643762083475158380131555, 2.54594996841195646948524675541, 3.66911177223457823826096905366, 4.88668386644369064893215520033, 5.50612968597535100727602125238, 6.65914886377827287956507054772, 7.34270975495614874318811892179, 8.310827957019065320787657143628, 9.075648640791609283388760184347