Properties

Label 2-1710-5.4-c1-0-1
Degree $2$
Conductor $1710$
Sign $-0.970 - 0.241i$
Analytic cond. $13.6544$
Root an. cond. $3.69518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + (0.539 − 2.17i)5-s − 1.07i·7-s i·8-s + (2.17 + 0.539i)10-s − 6.34·11-s − 3.41i·13-s + 1.07·14-s + 16-s + 5.41i·17-s − 19-s + (−0.539 + 2.17i)20-s − 6.34i·22-s + 6.34i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + (0.241 − 0.970i)5-s − 0.407i·7-s − 0.353i·8-s + (0.686 + 0.170i)10-s − 1.91·11-s − 0.948i·13-s + 0.288·14-s + 0.250·16-s + 1.31i·17-s − 0.229·19-s + (−0.120 + 0.485i)20-s − 1.35i·22-s + 1.32i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.241i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.970 - 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.970 - 0.241i$
Analytic conductor: \(13.6544\)
Root analytic conductor: \(3.69518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (1369, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :1/2),\ -0.970 - 0.241i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3294850507\)
\(L(\frac12)\) \(\approx\) \(0.3294850507\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 + (-0.539 + 2.17i)T \)
19 \( 1 + T \)
good7 \( 1 + 1.07iT - 7T^{2} \)
11 \( 1 + 6.34T + 11T^{2} \)
13 \( 1 + 3.41iT - 13T^{2} \)
17 \( 1 - 5.41iT - 17T^{2} \)
23 \( 1 - 6.34iT - 23T^{2} \)
29 \( 1 + 0.340T + 29T^{2} \)
31 \( 1 - 1.07T + 31T^{2} \)
37 \( 1 - 3.41iT - 37T^{2} \)
41 \( 1 + 7.60T + 41T^{2} \)
43 \( 1 - 11.1iT - 43T^{2} \)
47 \( 1 - 6.34iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 0.738T + 59T^{2} \)
61 \( 1 + 2.68T + 61T^{2} \)
67 \( 1 - 2.83iT - 67T^{2} \)
71 \( 1 - 2.83T + 71T^{2} \)
73 \( 1 + 6.83iT - 73T^{2} \)
79 \( 1 - 1.07T + 79T^{2} \)
83 \( 1 - 0.894iT - 83T^{2} \)
89 \( 1 - 6.92T + 89T^{2} \)
97 \( 1 + 3.65iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.677032529712557563673202580562, −8.670691663987296803452966326415, −7.85454469725372450049387134052, −7.76909705346316116099607958637, −6.34437325228248525893757697690, −5.54539252209782841888999062270, −5.05096850719533793167359295554, −4.07471786719990899263776790590, −2.89080992944744505144796786435, −1.38079421182201414411848402703, 0.12179180070479452303132482089, 2.26031643762083475158380131555, 2.54594996841195646948524675541, 3.66911177223457823826096905366, 4.88668386644369064893215520033, 5.50612968597535100727602125238, 6.65914886377827287956507054772, 7.34270975495614874318811892179, 8.310827957019065320787657143628, 9.075648640791609283388760184347

Graph of the $Z$-function along the critical line