L(s) = 1 | + (0.5 − 0.866i)5-s + (1.72 + 2.98i)7-s + (0.724 + 1.25i)11-s + (2.94 − 5.10i)13-s − 4.89·17-s + 4·19-s + (2.72 − 4.71i)23-s + (2 + 3.46i)25-s + (−0.0505 − 0.0874i)29-s + (1.27 − 2.20i)31-s + 3.44·35-s + 0.898·37-s + (−5.94 + 10.3i)41-s + (1.17 + 2.03i)43-s + (3.17 + 5.49i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (0.651 + 1.12i)7-s + (0.218 + 0.378i)11-s + (0.818 − 1.41i)13-s − 1.18·17-s + 0.917·19-s + (0.568 − 0.984i)23-s + (0.400 + 0.692i)25-s + (−0.00937 − 0.0162i)29-s + (0.229 − 0.396i)31-s + 0.583·35-s + 0.147·37-s + (−0.929 + 1.60i)41-s + (0.179 + 0.310i)43-s + (0.463 + 0.801i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0825i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.065998170\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.065998170\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.72 - 2.98i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.724 - 1.25i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.94 + 5.10i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.89T + 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + (-2.72 + 4.71i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.0505 + 0.0874i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.27 + 2.20i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 0.898T + 37T^{2} \) |
| 41 | \( 1 + (5.94 - 10.3i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.17 - 2.03i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.17 - 5.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.89T + 53T^{2} \) |
| 59 | \( 1 + (-7.17 + 12.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.94 + 6.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.17 - 10.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.79T + 71T^{2} \) |
| 73 | \( 1 + 4.89T + 73T^{2} \) |
| 79 | \( 1 + (-6.72 - 11.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.275 + 0.476i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 + (-1.94 - 3.37i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.192549985877580440630255961023, −8.535526474325837693306333513048, −8.014348212281432522867110797302, −6.88701627700647538406160476821, −5.97361148878903154157960562778, −5.24634318619143262840983201375, −4.58423533164180212757894368288, −3.23574429797695283510368643474, −2.29480020105080556231685410458, −1.07336079612621537608805950955,
1.04951655921322591573620054157, 2.13356210915103850722693014870, 3.55066214829680230130596966838, 4.21386504088834079915415819672, 5.14450345167735074413660997233, 6.27139523363594037707538634087, 6.98654862241536531562171246045, 7.51363841545800908509403922792, 8.785171700080501159457487586262, 9.043556190990965701859040056762