L(s) = 1 | + (0.5 − 0.866i)5-s + (1.72 + 2.98i)7-s + (0.724 + 1.25i)11-s + (2.94 − 5.10i)13-s − 4.89·17-s + 4·19-s + (2.72 − 4.71i)23-s + (2 + 3.46i)25-s + (−0.0505 − 0.0874i)29-s + (1.27 − 2.20i)31-s + 3.44·35-s + 0.898·37-s + (−5.94 + 10.3i)41-s + (1.17 + 2.03i)43-s + (3.17 + 5.49i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (0.651 + 1.12i)7-s + (0.218 + 0.378i)11-s + (0.818 − 1.41i)13-s − 1.18·17-s + 0.917·19-s + (0.568 − 0.984i)23-s + (0.400 + 0.692i)25-s + (−0.00937 − 0.0162i)29-s + (0.229 − 0.396i)31-s + 0.583·35-s + 0.147·37-s + (−0.929 + 1.60i)41-s + (0.179 + 0.310i)43-s + (0.463 + 0.801i)47-s + ⋯ |
Λ(s)=(=(1728s/2ΓC(s)L(s)(0.996−0.0825i)Λ(2−s)
Λ(s)=(=(1728s/2ΓC(s+1/2)L(s)(0.996−0.0825i)Λ(1−s)
Degree: |
2 |
Conductor: |
1728
= 26⋅33
|
Sign: |
0.996−0.0825i
|
Analytic conductor: |
13.7981 |
Root analytic conductor: |
3.71458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1728(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1728, ( :1/2), 0.996−0.0825i)
|
Particular Values
L(1) |
≈ |
2.065998170 |
L(21) |
≈ |
2.065998170 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−0.5+0.866i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−1.72−2.98i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.724−1.25i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.94+5.10i)T+(−6.5−11.2i)T2 |
| 17 | 1+4.89T+17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(−2.72+4.71i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.0505+0.0874i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.27+2.20i)T+(−15.5−26.8i)T2 |
| 37 | 1−0.898T+37T2 |
| 41 | 1+(5.94−10.3i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−1.17−2.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−3.17−5.49i)T+(−23.5+40.7i)T2 |
| 53 | 1−8.89T+53T2 |
| 59 | 1+(−7.17+12.4i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.94+6.84i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.17−10.6i)T+(−33.5−58.0i)T2 |
| 71 | 1−7.79T+71T2 |
| 73 | 1+4.89T+73T2 |
| 79 | 1+(−6.72−11.6i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.275+0.476i)T+(−41.5+71.8i)T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1+(−1.94−3.37i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.192549985877580440630255961023, −8.535526474325837693306333513048, −8.014348212281432522867110797302, −6.88701627700647538406160476821, −5.97361148878903154157960562778, −5.24634318619143262840983201375, −4.58423533164180212757894368288, −3.23574429797695283510368643474, −2.29480020105080556231685410458, −1.07336079612621537608805950955,
1.04951655921322591573620054157, 2.13356210915103850722693014870, 3.55066214829680230130596966838, 4.21386504088834079915415819672, 5.14450345167735074413660997233, 6.27139523363594037707538634087, 6.98654862241536531562171246045, 7.51363841545800908509403922792, 8.785171700080501159457487586262, 9.043556190990965701859040056762