L(s) = 1 | + 15·5-s − 25·7-s − 15·11-s − 20·13-s − 72·17-s − 2·19-s − 114·23-s + 100·25-s + 30·29-s + 101·31-s − 375·35-s + 430·37-s + 30·41-s − 110·43-s + 330·47-s + 282·49-s + 621·53-s − 225·55-s − 660·59-s + 376·61-s − 300·65-s + 250·67-s + 360·71-s + 785·73-s + 375·77-s + 488·79-s + 489·83-s + ⋯ |
L(s) = 1 | + 1.34·5-s − 1.34·7-s − 0.411·11-s − 0.426·13-s − 1.02·17-s − 0.0241·19-s − 1.03·23-s + 4/5·25-s + 0.192·29-s + 0.585·31-s − 1.81·35-s + 1.91·37-s + 0.114·41-s − 0.390·43-s + 1.02·47-s + 0.822·49-s + 1.60·53-s − 0.551·55-s − 1.45·59-s + 0.789·61-s − 0.572·65-s + 0.455·67-s + 0.601·71-s + 1.25·73-s + 0.555·77-s + 0.694·79-s + 0.646·83-s + ⋯ |
Λ(s)=(=(1728s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1728s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.867963828 |
L(21) |
≈ |
1.867963828 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−3pT+p3T2 |
| 7 | 1+25T+p3T2 |
| 11 | 1+15T+p3T2 |
| 13 | 1+20T+p3T2 |
| 17 | 1+72T+p3T2 |
| 19 | 1+2T+p3T2 |
| 23 | 1+114T+p3T2 |
| 29 | 1−30T+p3T2 |
| 31 | 1−101T+p3T2 |
| 37 | 1−430T+p3T2 |
| 41 | 1−30T+p3T2 |
| 43 | 1+110T+p3T2 |
| 47 | 1−330T+p3T2 |
| 53 | 1−621T+p3T2 |
| 59 | 1+660T+p3T2 |
| 61 | 1−376T+p3T2 |
| 67 | 1−250T+p3T2 |
| 71 | 1−360T+p3T2 |
| 73 | 1−785T+p3T2 |
| 79 | 1−488T+p3T2 |
| 83 | 1−489T+p3T2 |
| 89 | 1−450T+p3T2 |
| 97 | 1+1105T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.247204458725974793416278544461, −8.266769664436970503407941807189, −7.20486625028901444291783322961, −6.30795345537184846933462995507, −6.00843632866330852465018389541, −4.96563000226933331029469000817, −3.90561742116063638496522847829, −2.67881220184090618468696904049, −2.16069670954500208485082317390, −0.61855290661416154441323143999,
0.61855290661416154441323143999, 2.16069670954500208485082317390, 2.67881220184090618468696904049, 3.90561742116063638496522847829, 4.96563000226933331029469000817, 6.00843632866330852465018389541, 6.30795345537184846933462995507, 7.20486625028901444291783322961, 8.266769664436970503407941807189, 9.247204458725974793416278544461