Properties

Label 2-12e3-1.1-c3-0-19
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·5-s − 25·7-s − 15·11-s − 20·13-s − 72·17-s − 2·19-s − 114·23-s + 100·25-s + 30·29-s + 101·31-s − 375·35-s + 430·37-s + 30·41-s − 110·43-s + 330·47-s + 282·49-s + 621·53-s − 225·55-s − 660·59-s + 376·61-s − 300·65-s + 250·67-s + 360·71-s + 785·73-s + 375·77-s + 488·79-s + 489·83-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.34·7-s − 0.411·11-s − 0.426·13-s − 1.02·17-s − 0.0241·19-s − 1.03·23-s + 4/5·25-s + 0.192·29-s + 0.585·31-s − 1.81·35-s + 1.91·37-s + 0.114·41-s − 0.390·43-s + 1.02·47-s + 0.822·49-s + 1.60·53-s − 0.551·55-s − 1.45·59-s + 0.789·61-s − 0.572·65-s + 0.455·67-s + 0.601·71-s + 1.25·73-s + 0.555·77-s + 0.694·79-s + 0.646·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.867963828\)
\(L(\frac12)\) \(\approx\) \(1.867963828\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 3 p T + p^{3} T^{2} \)
7 \( 1 + 25 T + p^{3} T^{2} \)
11 \( 1 + 15 T + p^{3} T^{2} \)
13 \( 1 + 20 T + p^{3} T^{2} \)
17 \( 1 + 72 T + p^{3} T^{2} \)
19 \( 1 + 2 T + p^{3} T^{2} \)
23 \( 1 + 114 T + p^{3} T^{2} \)
29 \( 1 - 30 T + p^{3} T^{2} \)
31 \( 1 - 101 T + p^{3} T^{2} \)
37 \( 1 - 430 T + p^{3} T^{2} \)
41 \( 1 - 30 T + p^{3} T^{2} \)
43 \( 1 + 110 T + p^{3} T^{2} \)
47 \( 1 - 330 T + p^{3} T^{2} \)
53 \( 1 - 621 T + p^{3} T^{2} \)
59 \( 1 + 660 T + p^{3} T^{2} \)
61 \( 1 - 376 T + p^{3} T^{2} \)
67 \( 1 - 250 T + p^{3} T^{2} \)
71 \( 1 - 360 T + p^{3} T^{2} \)
73 \( 1 - 785 T + p^{3} T^{2} \)
79 \( 1 - 488 T + p^{3} T^{2} \)
83 \( 1 - 489 T + p^{3} T^{2} \)
89 \( 1 - 450 T + p^{3} T^{2} \)
97 \( 1 + 1105 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.247204458725974793416278544461, −8.266769664436970503407941807189, −7.20486625028901444291783322961, −6.30795345537184846933462995507, −6.00843632866330852465018389541, −4.96563000226933331029469000817, −3.90561742116063638496522847829, −2.67881220184090618468696904049, −2.16069670954500208485082317390, −0.61855290661416154441323143999, 0.61855290661416154441323143999, 2.16069670954500208485082317390, 2.67881220184090618468696904049, 3.90561742116063638496522847829, 4.96563000226933331029469000817, 6.00843632866330852465018389541, 6.30795345537184846933462995507, 7.20486625028901444291783322961, 8.266769664436970503407941807189, 9.247204458725974793416278544461

Graph of the $Z$-function along the critical line