Properties

Label 12-175e6-1.1-c9e6-0-1
Degree $12$
Conductor $2.872\times 10^{13}$
Sign $1$
Analytic cond. $5.36108\times 10^{11}$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15·2-s + 124·3-s + 81·4-s − 1.86e3·6-s + 1.44e4·7-s − 4.87e3·8-s + 4.18e3·9-s − 4.77e4·11-s + 1.00e4·12-s − 1.02e5·13-s − 2.16e5·14-s + 2.78e5·16-s + 3.84e4·17-s − 6.27e4·18-s + 3.61e5·19-s + 1.78e6·21-s + 7.16e5·22-s − 6.97e5·23-s − 6.04e5·24-s + 1.53e6·26-s − 1.48e6·27-s + 1.16e6·28-s + 1.60e7·29-s + 1.36e6·31-s − 1.01e6·32-s − 5.92e6·33-s − 5.77e5·34-s + ⋯
L(s)  = 1  − 0.662·2-s + 0.883·3-s + 0.158·4-s − 0.585·6-s + 2.26·7-s − 0.420·8-s + 0.212·9-s − 0.984·11-s + 0.139·12-s − 0.992·13-s − 1.50·14-s + 1.06·16-s + 0.111·17-s − 0.140·18-s + 0.635·19-s + 2.00·21-s + 0.652·22-s − 0.519·23-s − 0.372·24-s + 0.657·26-s − 0.536·27-s + 0.358·28-s + 4.20·29-s + 0.265·31-s − 0.170·32-s − 0.869·33-s − 0.0740·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(5^{12} \cdot 7^{6}\)
Sign: $1$
Analytic conductor: \(5.36108\times 10^{11}\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 5^{12} \cdot 7^{6} ,\ ( \ : [9/2]^{6} ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(50.78327710\)
\(L(\frac12)\) \(\approx\) \(50.78327710\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( ( 1 - p^{4} T )^{6} \)
good2 \( 1 + 15 T + 9 p^{4} T^{2} + 2911 p T^{3} - 32415 p^{2} T^{4} - 152505 p^{5} T^{5} + 701781 p^{6} T^{6} - 152505 p^{14} T^{7} - 32415 p^{20} T^{8} + 2911 p^{28} T^{9} + 9 p^{40} T^{10} + 15 p^{45} T^{11} + p^{54} T^{12} \)
3 \( 1 - 124 T + 11192 T^{2} + 280 p^{7} T^{3} - 5218624 p^{2} T^{4} - 2097956 p^{4} T^{5} + 65003194166 p^{4} T^{6} - 2097956 p^{13} T^{7} - 5218624 p^{20} T^{8} + 280 p^{34} T^{9} + 11192 p^{36} T^{10} - 124 p^{45} T^{11} + p^{54} T^{12} \)
11 \( 1 + 47796 T + 8379830664 T^{2} + 270782212098536 T^{3} + 35489011284799449744 T^{4} + \)\(95\!\cdots\!20\)\( T^{5} + \)\(10\!\cdots\!58\)\( T^{6} + \)\(95\!\cdots\!20\)\( p^{9} T^{7} + 35489011284799449744 p^{18} T^{8} + 270782212098536 p^{27} T^{9} + 8379830664 p^{36} T^{10} + 47796 p^{45} T^{11} + p^{54} T^{12} \)
13 \( 1 + 102168 T + 43775548728 T^{2} + 3697743349958732 T^{3} + \)\(90\!\cdots\!36\)\( T^{4} + \)\(63\!\cdots\!40\)\( T^{5} + \)\(11\!\cdots\!26\)\( T^{6} + \)\(63\!\cdots\!40\)\( p^{9} T^{7} + \)\(90\!\cdots\!36\)\( p^{18} T^{8} + 3697743349958732 p^{27} T^{9} + 43775548728 p^{36} T^{10} + 102168 p^{45} T^{11} + p^{54} T^{12} \)
17 \( 1 - 38472 T + 422077582368 T^{2} - 57913193733474572 T^{3} + \)\(81\!\cdots\!72\)\( T^{4} - \)\(17\!\cdots\!08\)\( T^{5} + \)\(10\!\cdots\!62\)\( T^{6} - \)\(17\!\cdots\!08\)\( p^{9} T^{7} + \)\(81\!\cdots\!72\)\( p^{18} T^{8} - 57913193733474572 p^{27} T^{9} + 422077582368 p^{36} T^{10} - 38472 p^{45} T^{11} + p^{54} T^{12} \)
19 \( 1 - 361056 T + 966857741034 T^{2} - 352940649239794944 T^{3} + \)\(59\!\cdots\!75\)\( T^{4} - \)\(96\!\cdots\!12\)\( p T^{5} + \)\(22\!\cdots\!40\)\( T^{6} - \)\(96\!\cdots\!12\)\( p^{10} T^{7} + \)\(59\!\cdots\!75\)\( p^{18} T^{8} - 352940649239794944 p^{27} T^{9} + 966857741034 p^{36} T^{10} - 361056 p^{45} T^{11} + p^{54} T^{12} \)
23 \( 1 + 697032 T + 3741541369650 T^{2} + 1347501248298667768 T^{3} + \)\(50\!\cdots\!51\)\( T^{4} - \)\(45\!\cdots\!24\)\( T^{5} + \)\(50\!\cdots\!84\)\( T^{6} - \)\(45\!\cdots\!24\)\( p^{9} T^{7} + \)\(50\!\cdots\!51\)\( p^{18} T^{8} + 1347501248298667768 p^{27} T^{9} + 3741541369650 p^{36} T^{10} + 697032 p^{45} T^{11} + p^{54} T^{12} \)
29 \( 1 - 552696 p T + 166361093577864 T^{2} - \)\(12\!\cdots\!76\)\( T^{3} + \)\(70\!\cdots\!40\)\( T^{4} - \)\(33\!\cdots\!12\)\( T^{5} + \)\(13\!\cdots\!30\)\( T^{6} - \)\(33\!\cdots\!12\)\( p^{9} T^{7} + \)\(70\!\cdots\!40\)\( p^{18} T^{8} - \)\(12\!\cdots\!76\)\( p^{27} T^{9} + 166361093577864 p^{36} T^{10} - 552696 p^{46} T^{11} + p^{54} T^{12} \)
31 \( 1 - 1362912 T + 81684677462154 T^{2} - \)\(24\!\cdots\!40\)\( T^{3} + \)\(35\!\cdots\!95\)\( T^{4} - \)\(13\!\cdots\!60\)\( T^{5} + \)\(10\!\cdots\!84\)\( T^{6} - \)\(13\!\cdots\!60\)\( p^{9} T^{7} + \)\(35\!\cdots\!95\)\( p^{18} T^{8} - \)\(24\!\cdots\!40\)\( p^{27} T^{9} + 81684677462154 p^{36} T^{10} - 1362912 p^{45} T^{11} + p^{54} T^{12} \)
37 \( 1 - 3912924 T + 195045151243146 T^{2} - \)\(17\!\cdots\!52\)\( T^{3} + \)\(41\!\cdots\!39\)\( T^{4} - \)\(39\!\cdots\!60\)\( T^{5} + \)\(42\!\cdots\!48\)\( T^{6} - \)\(39\!\cdots\!60\)\( p^{9} T^{7} + \)\(41\!\cdots\!39\)\( p^{18} T^{8} - \)\(17\!\cdots\!52\)\( p^{27} T^{9} + 195045151243146 p^{36} T^{10} - 3912924 p^{45} T^{11} + p^{54} T^{12} \)
41 \( 1 - 22452756 T + 1622036797695018 T^{2} - \)\(28\!\cdots\!00\)\( T^{3} + \)\(11\!\cdots\!95\)\( T^{4} - \)\(16\!\cdots\!44\)\( T^{5} + \)\(45\!\cdots\!32\)\( T^{6} - \)\(16\!\cdots\!44\)\( p^{9} T^{7} + \)\(11\!\cdots\!95\)\( p^{18} T^{8} - \)\(28\!\cdots\!00\)\( p^{27} T^{9} + 1622036797695018 p^{36} T^{10} - 22452756 p^{45} T^{11} + p^{54} T^{12} \)
43 \( 1 - 29998992 T + 2380551033522234 T^{2} - \)\(60\!\cdots\!60\)\( T^{3} + \)\(26\!\cdots\!11\)\( T^{4} - \)\(54\!\cdots\!52\)\( T^{5} + \)\(17\!\cdots\!48\)\( T^{6} - \)\(54\!\cdots\!52\)\( p^{9} T^{7} + \)\(26\!\cdots\!11\)\( p^{18} T^{8} - \)\(60\!\cdots\!60\)\( p^{27} T^{9} + 2380551033522234 p^{36} T^{10} - 29998992 p^{45} T^{11} + p^{54} T^{12} \)
47 \( 1 - 121271508 T + 9406050408578688 T^{2} - \)\(46\!\cdots\!04\)\( T^{3} + \)\(18\!\cdots\!00\)\( T^{4} - \)\(56\!\cdots\!04\)\( T^{5} + \)\(18\!\cdots\!86\)\( T^{6} - \)\(56\!\cdots\!04\)\( p^{9} T^{7} + \)\(18\!\cdots\!00\)\( p^{18} T^{8} - \)\(46\!\cdots\!04\)\( p^{27} T^{9} + 9406050408578688 p^{36} T^{10} - 121271508 p^{45} T^{11} + p^{54} T^{12} \)
53 \( 1 - 20308596 T + 5609660587202082 T^{2} - \)\(89\!\cdots\!80\)\( T^{3} + \)\(39\!\cdots\!59\)\( T^{4} - \)\(49\!\cdots\!56\)\( T^{5} + \)\(12\!\cdots\!84\)\( T^{6} - \)\(49\!\cdots\!56\)\( p^{9} T^{7} + \)\(39\!\cdots\!59\)\( p^{18} T^{8} - \)\(89\!\cdots\!80\)\( p^{27} T^{9} + 5609660587202082 p^{36} T^{10} - 20308596 p^{45} T^{11} + p^{54} T^{12} \)
59 \( 1 - 120280392 T + 26534507921192850 T^{2} - \)\(30\!\cdots\!60\)\( T^{3} + \)\(44\!\cdots\!31\)\( T^{4} - \)\(40\!\cdots\!60\)\( T^{5} + \)\(45\!\cdots\!56\)\( T^{6} - \)\(40\!\cdots\!60\)\( p^{9} T^{7} + \)\(44\!\cdots\!31\)\( p^{18} T^{8} - \)\(30\!\cdots\!60\)\( p^{27} T^{9} + 26534507921192850 p^{36} T^{10} - 120280392 p^{45} T^{11} + p^{54} T^{12} \)
61 \( 1 + 87693540 T + 25065803466079746 T^{2} + \)\(18\!\cdots\!12\)\( T^{3} + \)\(47\!\cdots\!23\)\( T^{4} + \)\(34\!\cdots\!48\)\( T^{5} + \)\(69\!\cdots\!60\)\( T^{6} + \)\(34\!\cdots\!48\)\( p^{9} T^{7} + \)\(47\!\cdots\!23\)\( p^{18} T^{8} + \)\(18\!\cdots\!12\)\( p^{27} T^{9} + 25065803466079746 p^{36} T^{10} + 87693540 p^{45} T^{11} + p^{54} T^{12} \)
67 \( 1 + 495050664 T + 239003350816184034 T^{2} + \)\(71\!\cdots\!80\)\( T^{3} + \)\(19\!\cdots\!83\)\( T^{4} + \)\(40\!\cdots\!64\)\( T^{5} + \)\(74\!\cdots\!48\)\( T^{6} + \)\(40\!\cdots\!64\)\( p^{9} T^{7} + \)\(19\!\cdots\!83\)\( p^{18} T^{8} + \)\(71\!\cdots\!80\)\( p^{27} T^{9} + 239003350816184034 p^{36} T^{10} + 495050664 p^{45} T^{11} + p^{54} T^{12} \)
71 \( 1 - 253762512 T + 152405832326709738 T^{2} - \)\(48\!\cdots\!44\)\( p T^{3} + \)\(86\!\cdots\!79\)\( T^{4} - \)\(20\!\cdots\!24\)\( T^{5} + \)\(34\!\cdots\!84\)\( T^{6} - \)\(20\!\cdots\!24\)\( p^{9} T^{7} + \)\(86\!\cdots\!79\)\( p^{18} T^{8} - \)\(48\!\cdots\!44\)\( p^{28} T^{9} + 152405832326709738 p^{36} T^{10} - 253762512 p^{45} T^{11} + p^{54} T^{12} \)
73 \( 1 + 187195308 T + 219035051028369810 T^{2} + \)\(34\!\cdots\!92\)\( T^{3} + \)\(24\!\cdots\!63\)\( T^{4} + \)\(33\!\cdots\!04\)\( T^{5} + \)\(17\!\cdots\!36\)\( T^{6} + \)\(33\!\cdots\!04\)\( p^{9} T^{7} + \)\(24\!\cdots\!63\)\( p^{18} T^{8} + \)\(34\!\cdots\!92\)\( p^{27} T^{9} + 219035051028369810 p^{36} T^{10} + 187195308 p^{45} T^{11} + p^{54} T^{12} \)
79 \( 1 - 831079500 T + 689785417883020464 T^{2} - \)\(34\!\cdots\!44\)\( T^{3} + \)\(18\!\cdots\!80\)\( T^{4} - \)\(71\!\cdots\!08\)\( T^{5} + \)\(28\!\cdots\!50\)\( T^{6} - \)\(71\!\cdots\!08\)\( p^{9} T^{7} + \)\(18\!\cdots\!80\)\( p^{18} T^{8} - \)\(34\!\cdots\!44\)\( p^{27} T^{9} + 689785417883020464 p^{36} T^{10} - 831079500 p^{45} T^{11} + p^{54} T^{12} \)
83 \( 1 - 767650536 T + 1190415298294226274 T^{2} - \)\(67\!\cdots\!68\)\( T^{3} + \)\(68\!\cdots\!89\)\( p T^{4} - \)\(24\!\cdots\!28\)\( T^{5} + \)\(14\!\cdots\!32\)\( T^{6} - \)\(24\!\cdots\!28\)\( p^{9} T^{7} + \)\(68\!\cdots\!89\)\( p^{19} T^{8} - \)\(67\!\cdots\!68\)\( p^{27} T^{9} + 1190415298294226274 p^{36} T^{10} - 767650536 p^{45} T^{11} + p^{54} T^{12} \)
89 \( 1 - 582579684 T + 878699529449962794 T^{2} - \)\(31\!\cdots\!36\)\( T^{3} + \)\(36\!\cdots\!75\)\( T^{4} - \)\(12\!\cdots\!32\)\( T^{5} + \)\(14\!\cdots\!80\)\( T^{6} - \)\(12\!\cdots\!32\)\( p^{9} T^{7} + \)\(36\!\cdots\!75\)\( p^{18} T^{8} - \)\(31\!\cdots\!36\)\( p^{27} T^{9} + 878699529449962794 p^{36} T^{10} - 582579684 p^{45} T^{11} + p^{54} T^{12} \)
97 \( 1 - 1184506872 T + 3794394595772867376 T^{2} - \)\(34\!\cdots\!24\)\( T^{3} + \)\(62\!\cdots\!12\)\( T^{4} - \)\(44\!\cdots\!16\)\( T^{5} + \)\(59\!\cdots\!78\)\( T^{6} - \)\(44\!\cdots\!16\)\( p^{9} T^{7} + \)\(62\!\cdots\!12\)\( p^{18} T^{8} - \)\(34\!\cdots\!24\)\( p^{27} T^{9} + 3794394595772867376 p^{36} T^{10} - 1184506872 p^{45} T^{11} + p^{54} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.41263835686993090119229600754, −5.10504629690608883718421307331, −4.69710205723035864941869569395, −4.62625342553001685068234989245, −4.59106251912364945928933620443, −4.41707040554953725882250097694, −4.14246296924503175458369494309, −4.05142723544054440959064309902, −3.53522863196308751161505348193, −3.36749857561570738122688570885, −3.26695171164263286805115950882, −2.88347215753716891488710116349, −2.60070010355269070872273085108, −2.59926445424949274042905414335, −2.50189904534992133399402648770, −2.18862665864059727816101226593, −2.06264267092577066350874277184, −1.69568372408092307296508808340, −1.48607946264887668110357315412, −1.30101339604578226427841379757, −0.873431912594651354936750251317, −0.78817208255800473873763885056, −0.57217233219124096549096784609, −0.52431950988214514799183826725, −0.50836809558986725694613800807, 0.50836809558986725694613800807, 0.52431950988214514799183826725, 0.57217233219124096549096784609, 0.78817208255800473873763885056, 0.873431912594651354936750251317, 1.30101339604578226427841379757, 1.48607946264887668110357315412, 1.69568372408092307296508808340, 2.06264267092577066350874277184, 2.18862665864059727816101226593, 2.50189904534992133399402648770, 2.59926445424949274042905414335, 2.60070010355269070872273085108, 2.88347215753716891488710116349, 3.26695171164263286805115950882, 3.36749857561570738122688570885, 3.53522863196308751161505348193, 4.05142723544054440959064309902, 4.14246296924503175458369494309, 4.41707040554953725882250097694, 4.59106251912364945928933620443, 4.62625342553001685068234989245, 4.69710205723035864941869569395, 5.10504629690608883718421307331, 5.41263835686993090119229600754

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.