L(s) = 1 | − 3.70·2-s + 5.70·3-s + 5.70·4-s − 21.1·6-s − 7·7-s + 8.50·8-s + 5.50·9-s − 60.0·11-s + 32.5·12-s − 0.387·13-s + 25.9·14-s − 77.1·16-s + 35.4·17-s − 20.3·18-s − 6.08·19-s − 39.9·21-s + 222.·22-s + 31.5·23-s + 48.5·24-s + 1.43·26-s − 122.·27-s − 39.9·28-s − 292.·29-s + 130.·31-s + 217.·32-s − 342.·33-s − 131.·34-s + ⋯ |
L(s) = 1 | − 1.30·2-s + 1.09·3-s + 0.712·4-s − 1.43·6-s − 0.377·7-s + 0.375·8-s + 0.203·9-s − 1.64·11-s + 0.782·12-s − 0.00826·13-s + 0.494·14-s − 1.20·16-s + 0.506·17-s − 0.266·18-s − 0.0735·19-s − 0.414·21-s + 2.15·22-s + 0.285·23-s + 0.412·24-s + 0.0108·26-s − 0.873·27-s − 0.269·28-s − 1.87·29-s + 0.754·31-s + 1.20·32-s − 1.80·33-s − 0.662·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1+3.70T+8T2 |
| 3 | 1−5.70T+27T2 |
| 11 | 1+60.0T+1.33e3T2 |
| 13 | 1+0.387T+2.19e3T2 |
| 17 | 1−35.4T+4.91e3T2 |
| 19 | 1+6.08T+6.85e3T2 |
| 23 | 1−31.5T+1.21e4T2 |
| 29 | 1+292.T+2.43e4T2 |
| 31 | 1−130.T+2.97e4T2 |
| 37 | 1+219.T+5.06e4T2 |
| 41 | 1+447.T+6.89e4T2 |
| 43 | 1+210.T+7.95e4T2 |
| 47 | 1+457.T+1.03e5T2 |
| 53 | 1+144.T+1.48e5T2 |
| 59 | 1−767.T+2.05e5T2 |
| 61 | 1−667.T+2.26e5T2 |
| 67 | 1−77.4T+3.00e5T2 |
| 71 | 1+906.T+3.57e5T2 |
| 73 | 1−1.02e3T+3.89e5T2 |
| 79 | 1+690.T+4.93e5T2 |
| 83 | 1−979.T+5.71e5T2 |
| 89 | 1+910.T+7.04e5T2 |
| 97 | 1+11.1T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41832470961225980992717063400, −10.27225130164580296470587129842, −9.676777644196231857586231896516, −8.573381728798433632334930724805, −8.030839375156797704516647440047, −7.08053852838920900218055868615, −5.24844023302266390233237627885, −3.34707444407198510518869819137, −2.05284208090969814397299941670, 0,
2.05284208090969814397299941670, 3.34707444407198510518869819137, 5.24844023302266390233237627885, 7.08053852838920900218055868615, 8.030839375156797704516647440047, 8.573381728798433632334930724805, 9.676777644196231857586231896516, 10.27225130164580296470587129842, 11.41832470961225980992717063400