L(s) = 1 | + 4.62i·2-s − 8.38i·3-s − 13.3·4-s + 38.7·6-s − 7i·7-s − 24.9i·8-s − 43.3·9-s − 30.1·11-s + 112. i·12-s + 88.9i·13-s + 32.3·14-s + 8.10·16-s + 4.73i·17-s − 200. i·18-s − 124.·19-s + ⋯ |
L(s) = 1 | + 1.63i·2-s − 1.61i·3-s − 1.67·4-s + 2.63·6-s − 0.377i·7-s − 1.10i·8-s − 1.60·9-s − 0.825·11-s + 2.70i·12-s + 1.89i·13-s + 0.617·14-s + 0.126·16-s + 0.0675i·17-s − 2.62i·18-s − 1.50·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0500827 - 0.212153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0500827 - 0.212153i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + 7iT \) |
good | 2 | \( 1 - 4.62iT - 8T^{2} \) |
| 3 | \( 1 + 8.38iT - 27T^{2} \) |
| 11 | \( 1 + 30.1T + 1.33e3T^{2} \) |
| 13 | \( 1 - 88.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 4.73iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 124.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 20.2iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 134.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 2.03T + 2.97e4T^{2} \) |
| 37 | \( 1 - 141. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 95.2T + 6.89e4T^{2} \) |
| 43 | \( 1 + 298. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 129. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 388. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 838.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 389.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 697. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 523.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 66.4iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 526.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 70.0iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 9.27T + 7.04e5T^{2} \) |
| 97 | \( 1 - 4.19iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.22805372563586425486588137603, −12.21345198670740098728044301535, −10.99420316012251071736070796260, −9.189738801868788912698725417434, −8.254258729188601394603326089598, −7.39890403130623978992935462599, −6.71864968476462883822267420060, −5.95154462912950063063656485706, −4.46690025153983776732904224606, −1.98394844495889893801492098413,
0.093442374290872021546514594534, 2.54751090868037895702696075158, 3.50975500326661890101014991270, 4.64597721459979143774824722465, 5.63643084049098432980040717033, 8.166469755608880457401211798965, 9.145763727797844815743326071983, 10.12442855057286235993870976836, 10.59893595269608799135175168528, 11.25848234198246846161341730416