L(s) = 1 | + (−2.70 − 0.141i)2-s + (−2.31 − 2.85i)3-s + (−0.643 − 0.0676i)4-s + (8.55 + 7.20i)5-s + (5.85 + 8.05i)6-s + (−16.6 − 8.09i)7-s + (23.1 + 3.66i)8-s + (2.80 − 13.2i)9-s + (−22.1 − 20.7i)10-s + (30.3 − 6.44i)11-s + (1.29 + 1.99i)12-s + (−54.8 − 27.9i)13-s + (43.9 + 24.2i)14-s + (0.790 − 41.0i)15-s + (−57.1 − 12.1i)16-s + (20.8 + 54.2i)17-s + ⋯ |
L(s) = 1 | + (−0.957 − 0.0501i)2-s + (−0.444 − 0.549i)3-s + (−0.0804 − 0.00845i)4-s + (0.764 + 0.644i)5-s + (0.398 + 0.548i)6-s + (−0.899 − 0.436i)7-s + (1.02 + 0.162i)8-s + (0.104 − 0.489i)9-s + (−0.699 − 0.655i)10-s + (0.831 − 0.176i)11-s + (0.0311 + 0.0479i)12-s + (−1.17 − 0.596i)13-s + (0.839 + 0.463i)14-s + (0.0136 − 0.706i)15-s + (−0.892 − 0.189i)16-s + (0.296 + 0.773i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.777−0.628i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.777−0.628i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.777−0.628i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.777−0.628i)
|
Particular Values
L(2) |
≈ |
0.00673058+0.0190194i |
L(21) |
≈ |
0.00673058+0.0190194i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−8.55−7.20i)T |
| 7 | 1+(16.6+8.09i)T |
good | 2 | 1+(2.70+0.141i)T+(7.95+0.836i)T2 |
| 3 | 1+(2.31+2.85i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−30.3+6.44i)T+(1.21e3−541.i)T2 |
| 13 | 1+(54.8+27.9i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−20.8−54.2i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(12.2+116.i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(7.28−138.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(38.9−53.6i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(95.5−214.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(158.−103.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(184.−59.9i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(361.+361.i)T+7.95e4iT2 |
| 47 | 1+(142.+54.7i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(139.−112.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−224.+249.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−21.6+19.5i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(152.−58.4i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−814.−591.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(662.−1.01e3i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(360.+809.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−24.2+153.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(453.+503.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(145.+916.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71895256818765134356799428674, −11.46974739073954839932237734567, −10.30917702547196467770617926281, −9.731014630532988009718517972023, −8.850794880053864020027016921976, −7.18346340042681824122507371054, −6.77199363139231921984281112205, −5.36663646703510766931838317236, −3.42254829422624501170088409228, −1.47829721467928351451031374250,
0.01380748917246478427193977632, 1.95497545962538546312747069467, 4.26624467567141713751358582238, 5.30350936337814507183453940207, 6.60494378340039049781243454909, 7.992962401798487147227257896207, 9.225318359218388210917431190418, 9.714976819134299218087710272177, 10.32387182807938979207963750959, 11.83127021041590355882499407270