Properties

Label 2-175-175.17-c3-0-31
Degree $2$
Conductor $175$
Sign $0.497 + 0.867i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.99 − 0.104i)2-s + (−5.07 + 6.26i)3-s + (−3.98 + 0.419i)4-s + (−10.9 − 2.26i)5-s + (−9.46 + 13.0i)6-s + (15.9 − 9.35i)7-s + (−23.6 + 3.75i)8-s + (−7.90 − 37.1i)9-s + (−22.0 − 3.36i)10-s + (24.3 + 5.17i)11-s + (17.6 − 27.1i)12-s + (29.1 − 14.8i)13-s + (30.9 − 20.3i)14-s + (69.7 − 57.1i)15-s + (−15.4 + 3.29i)16-s + (−16.7 + 43.7i)17-s + ⋯
L(s)  = 1  + (0.705 − 0.0369i)2-s + (−0.976 + 1.20i)3-s + (−0.498 + 0.0523i)4-s + (−0.979 − 0.202i)5-s + (−0.644 + 0.886i)6-s + (0.862 − 0.505i)7-s + (−1.04 + 0.165i)8-s + (−0.292 − 1.37i)9-s + (−0.698 − 0.106i)10-s + (0.667 + 0.141i)11-s + (0.423 − 0.652i)12-s + (0.622 − 0.317i)13-s + (0.589 − 0.388i)14-s + (1.20 − 0.983i)15-s + (−0.242 + 0.0514i)16-s + (−0.239 + 0.623i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.497 + 0.867i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.497 + 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.497 + 0.867i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.497 + 0.867i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.667798 - 0.386679i\)
\(L(\frac12)\) \(\approx\) \(0.667798 - 0.386679i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (10.9 + 2.26i)T \)
7 \( 1 + (-15.9 + 9.35i)T \)
good2 \( 1 + (-1.99 + 0.104i)T + (7.95 - 0.836i)T^{2} \)
3 \( 1 + (5.07 - 6.26i)T + (-5.61 - 26.4i)T^{2} \)
11 \( 1 + (-24.3 - 5.17i)T + (1.21e3 + 541. i)T^{2} \)
13 \( 1 + (-29.1 + 14.8i)T + (1.29e3 - 1.77e3i)T^{2} \)
17 \( 1 + (16.7 - 43.7i)T + (-3.65e3 - 3.28e3i)T^{2} \)
19 \( 1 + (-3.73 + 35.5i)T + (-6.70e3 - 1.42e3i)T^{2} \)
23 \( 1 + (11.4 + 218. i)T + (-1.21e4 + 1.27e3i)T^{2} \)
29 \( 1 + (130. + 179. i)T + (-7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-38.2 - 85.8i)T + (-1.99e4 + 2.21e4i)T^{2} \)
37 \( 1 + (218. + 141. i)T + (2.06e4 + 4.62e4i)T^{2} \)
41 \( 1 + (-36.1 - 11.7i)T + (5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + (-119. + 119. i)T - 7.95e4iT^{2} \)
47 \( 1 + (340. - 130. i)T + (7.71e4 - 6.94e4i)T^{2} \)
53 \( 1 + (224. + 181. i)T + (3.09e4 + 1.45e5i)T^{2} \)
59 \( 1 + (392. + 435. i)T + (-2.14e4 + 2.04e5i)T^{2} \)
61 \( 1 + (-650. - 585. i)T + (2.37e4 + 2.25e5i)T^{2} \)
67 \( 1 + (586. + 225. i)T + (2.23e5 + 2.01e5i)T^{2} \)
71 \( 1 + (-783. + 569. i)T + (1.10e5 - 3.40e5i)T^{2} \)
73 \( 1 + (96.8 + 149. i)T + (-1.58e5 + 3.55e5i)T^{2} \)
79 \( 1 + (128. - 289. i)T + (-3.29e5 - 3.66e5i)T^{2} \)
83 \( 1 + (-129. - 819. i)T + (-5.43e5 + 1.76e5i)T^{2} \)
89 \( 1 + (-741. + 823. i)T + (-7.36e4 - 7.01e5i)T^{2} \)
97 \( 1 + (-35.9 + 226. i)T + (-8.68e5 - 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95583115048023684385273986299, −11.18608451691648590923732454829, −10.44367345375708813088476170585, −9.071005862482601775216264889747, −8.152196483407548596378831222292, −6.40144734632431423821870812706, −5.10928050790918127037660439613, −4.34722212751535893543575531973, −3.75856272016217531664709493375, −0.36508346878130150013121490396, 1.34257482556512106426821620744, 3.60889845611392371008733093458, 4.98032359795220412107836473226, 5.91384173699896346604626647341, 7.03280531367928166600405101006, 8.070590272879412816223406255998, 9.190729167976256198074417697590, 11.17630694241959436138186052628, 11.66157934007288600125349288777, 12.27614285286908604501844255589

Graph of the $Z$-function along the critical line