L(s) = 1 | + (−0.826 + 0.563i)7-s + (−0.590 + 1.22i)13-s + (0.975 + 0.563i)19-s + (0.826 + 0.563i)25-s + (−1.61 + 0.930i)31-s + (0.722 + 1.84i)37-s + (0.0332 − 0.145i)43-s + (0.365 − 0.930i)49-s + (1.45 − 0.571i)61-s + (−0.955 − 1.65i)67-s + (−0.167 + 0.246i)73-s + (−0.365 + 0.632i)79-s + (−0.202 − 1.34i)91-s + 0.867i·97-s + (−0.587 + 1.90i)103-s + ⋯ |
L(s) = 1 | + (−0.826 + 0.563i)7-s + (−0.590 + 1.22i)13-s + (0.975 + 0.563i)19-s + (0.826 + 0.563i)25-s + (−1.61 + 0.930i)31-s + (0.722 + 1.84i)37-s + (0.0332 − 0.145i)43-s + (0.365 − 0.930i)49-s + (1.45 − 0.571i)61-s + (−0.955 − 1.65i)67-s + (−0.167 + 0.246i)73-s + (−0.365 + 0.632i)79-s + (−0.202 − 1.34i)91-s + 0.867i·97-s + (−0.587 + 1.90i)103-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.232−0.972i)Λ(1−s)
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.232−0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.232−0.972i
|
Analytic conductor: |
0.880350 |
Root analytic conductor: |
0.938270 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :0), 0.232−0.972i)
|
Particular Values
L(21) |
≈ |
0.9032618248 |
L(21) |
≈ |
0.9032618248 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.826−0.563i)T |
good | 5 | 1+(−0.826−0.563i)T2 |
| 11 | 1+(−0.988+0.149i)T2 |
| 13 | 1+(0.590−1.22i)T+(−0.623−0.781i)T2 |
| 17 | 1+(−0.955−0.294i)T2 |
| 19 | 1+(−0.975−0.563i)T+(0.5+0.866i)T2 |
| 23 | 1+(0.955−0.294i)T2 |
| 29 | 1+(−0.222−0.974i)T2 |
| 31 | 1+(1.61−0.930i)T+(0.5−0.866i)T2 |
| 37 | 1+(−0.722−1.84i)T+(−0.733+0.680i)T2 |
| 41 | 1+(0.900−0.433i)T2 |
| 43 | 1+(−0.0332+0.145i)T+(−0.900−0.433i)T2 |
| 47 | 1+(−0.365+0.930i)T2 |
| 53 | 1+(−0.733−0.680i)T2 |
| 59 | 1+(−0.826+0.563i)T2 |
| 61 | 1+(−1.45+0.571i)T+(0.733−0.680i)T2 |
| 67 | 1+(0.955+1.65i)T+(−0.5+0.866i)T2 |
| 71 | 1+(−0.222+0.974i)T2 |
| 73 | 1+(0.167−0.246i)T+(−0.365−0.930i)T2 |
| 79 | 1+(0.365−0.632i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.623+0.781i)T2 |
| 89 | 1+(0.988+0.149i)T2 |
| 97 | 1−0.867iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.476605675225854430690541183072, −9.109741304963965972019918059091, −8.126263108261862559686834295362, −7.10235969981292409880484890757, −6.60895600833690614797475677467, −5.58868580702850391724913819448, −4.84135292788876722116137899542, −3.67289543871433556881637552835, −2.84982457306577629642088138994, −1.63244375822373456471380590988,
0.69347759071025182469069164394, 2.48395941916319935296508840565, 3.32921518054907508555654711833, 4.27310679034682571741678712989, 5.37270272152770468975319676049, 6.01316272848023151044913984902, 7.29575311101666243852545916410, 7.38182767828418661917798789364, 8.602610128831082964533823011725, 9.437806640231741288607240951869