L(s) = 1 | + (−0.826 + 0.563i)7-s + (−0.590 + 1.22i)13-s + (0.975 + 0.563i)19-s + (0.826 + 0.563i)25-s + (−1.61 + 0.930i)31-s + (0.722 + 1.84i)37-s + (0.0332 − 0.145i)43-s + (0.365 − 0.930i)49-s + (1.45 − 0.571i)61-s + (−0.955 − 1.65i)67-s + (−0.167 + 0.246i)73-s + (−0.365 + 0.632i)79-s + (−0.202 − 1.34i)91-s + 0.867i·97-s + (−0.587 + 1.90i)103-s + ⋯ |
L(s) = 1 | + (−0.826 + 0.563i)7-s + (−0.590 + 1.22i)13-s + (0.975 + 0.563i)19-s + (0.826 + 0.563i)25-s + (−1.61 + 0.930i)31-s + (0.722 + 1.84i)37-s + (0.0332 − 0.145i)43-s + (0.365 − 0.930i)49-s + (1.45 − 0.571i)61-s + (−0.955 − 1.65i)67-s + (−0.167 + 0.246i)73-s + (−0.365 + 0.632i)79-s + (−0.202 − 1.34i)91-s + 0.867i·97-s + (−0.587 + 1.90i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.232 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.232 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9032618248\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9032618248\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.826 - 0.563i)T \) |
good | 5 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 11 | \( 1 + (-0.988 + 0.149i)T^{2} \) |
| 13 | \( 1 + (0.590 - 1.22i)T + (-0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 19 | \( 1 + (-0.975 - 0.563i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.955 - 0.294i)T^{2} \) |
| 29 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (1.61 - 0.930i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.722 - 1.84i)T + (-0.733 + 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 43 | \( 1 + (-0.0332 + 0.145i)T + (-0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 53 | \( 1 + (-0.733 - 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 61 | \( 1 + (-1.45 + 0.571i)T + (0.733 - 0.680i)T^{2} \) |
| 67 | \( 1 + (0.955 + 1.65i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (0.167 - 0.246i)T + (-0.365 - 0.930i)T^{2} \) |
| 79 | \( 1 + (0.365 - 0.632i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 97 | \( 1 - 0.867iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.476605675225854430690541183072, −9.109741304963965972019918059091, −8.126263108261862559686834295362, −7.10235969981292409880484890757, −6.60895600833690614797475677467, −5.58868580702850391724913819448, −4.84135292788876722116137899542, −3.67289543871433556881637552835, −2.84982457306577629642088138994, −1.63244375822373456471380590988,
0.69347759071025182469069164394, 2.48395941916319935296508840565, 3.32921518054907508555654711833, 4.27310679034682571741678712989, 5.37270272152770468975319676049, 6.01316272848023151044913984902, 7.29575311101666243852545916410, 7.38182767828418661917798789364, 8.602610128831082964533823011725, 9.437806640231741288607240951869