L(s) = 1 | + (−1.64 − 0.545i)3-s + (−0.849 + 1.47i)5-s + (2.40 + 1.79i)9-s + (−1.23 − 2.14i)11-s + (0.388 − 0.673i)13-s + (2.19 − 1.95i)15-s − 2.81·17-s + 4.98·19-s + (−0.356 + 0.616i)23-s + (1.05 + 1.82i)25-s + (−2.97 − 4.25i)27-s + (−2.25 − 3.90i)29-s + (2.54 − 4.41i)31-s + (0.866 + 4.20i)33-s − 6.87·37-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.314i)3-s + (−0.380 + 0.658i)5-s + (0.801 + 0.597i)9-s + (−0.373 − 0.646i)11-s + (0.107 − 0.186i)13-s + (0.567 − 0.505i)15-s − 0.681·17-s + 1.14·19-s + (−0.0742 + 0.128i)23-s + (0.211 + 0.365i)25-s + (−0.572 − 0.819i)27-s + (−0.418 − 0.725i)29-s + (0.457 − 0.793i)31-s + (0.150 + 0.731i)33-s − 1.13·37-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.449−0.893i)Λ(2−s)
Λ(s)=(=(1764s/2ΓC(s+1/2)L(s)(0.449−0.893i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.449−0.893i
|
Analytic conductor: |
14.0856 |
Root analytic conductor: |
3.75308 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :1/2), 0.449−0.893i)
|
Particular Values
L(1) |
≈ |
0.8639534433 |
L(21) |
≈ |
0.8639534433 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.64+0.545i)T |
| 7 | 1 |
good | 5 | 1+(0.849−1.47i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.23+2.14i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.388+0.673i)T+(−6.5−11.2i)T2 |
| 17 | 1+2.81T+17T2 |
| 19 | 1−4.98T+19T2 |
| 23 | 1+(0.356−0.616i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.25+3.90i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.54+4.41i)T+(−15.5−26.8i)T2 |
| 37 | 1+6.87T+37T2 |
| 41 | 1+(2.93−5.08i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2.32−4.03i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.49−11.2i)T+(−23.5+40.7i)T2 |
| 53 | 1−1.88T+53T2 |
| 59 | 1+(−7.14+12.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−7.15−12.3i)T+(−30.5+52.8i)T2 |
| 67 | 1+(3.99−6.91i)T+(−33.5−58.0i)T2 |
| 71 | 1+10.2T+71T2 |
| 73 | 1+4.98T+73T2 |
| 79 | 1+(−4.60−7.97i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−4.40−7.63i)T+(−41.5+71.8i)T2 |
| 89 | 1+9.65T+89T2 |
| 97 | 1+(−4.32−7.48i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.628862336306115823873257152184, −8.507963438155097461852983914750, −7.61477381262671285275471645510, −7.10980379452563710484960839287, −6.16805722380876958658588015082, −5.55580178916776948421425464961, −4.59111320660843624605352238204, −3.54131843844701919339776408986, −2.47585520508381724223350860315, −0.979330793066210489694237825233,
0.46937208633514497947741358456, 1.82660533984197579320146263773, 3.42032787559572487649908137769, 4.39442907023558392510257909643, 5.04930718727211377081973311919, 5.71327199690212884772058246978, 6.91642658223995165976354794515, 7.30008996912562706906628100996, 8.581642160168505375243193099629, 9.082878253492080175524118103767