L(s) = 1 | + (0.899 + 1.47i)3-s + (−1.19 + 2.06i)5-s + (−1.38 + 2.66i)9-s + (1.12 + 1.95i)11-s + (−2.37 + 4.12i)13-s + (−4.12 + 0.0937i)15-s + 4.30·17-s + 8.59·19-s + (−0.664 + 1.15i)23-s + (−0.343 − 0.595i)25-s + (−5.18 + 0.353i)27-s + (−3.87 − 6.71i)29-s + (0.405 − 0.702i)31-s + (−1.87 + 3.43i)33-s − 4.63·37-s + ⋯ |
L(s) = 1 | + (0.519 + 0.854i)3-s + (−0.533 + 0.923i)5-s + (−0.460 + 0.887i)9-s + (0.340 + 0.590i)11-s + (−0.659 + 1.14i)13-s + (−1.06 + 0.0242i)15-s + 1.04·17-s + 1.97·19-s + (−0.138 + 0.240i)23-s + (−0.0687 − 0.119i)25-s + (−0.997 + 0.0680i)27-s + (−0.720 − 1.24i)29-s + (0.0727 − 0.126i)31-s + (−0.327 + 0.597i)33-s − 0.761·37-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(−0.954−0.299i)Λ(2−s)
Λ(s)=(=(1764s/2ΓC(s+1/2)L(s)(−0.954−0.299i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
−0.954−0.299i
|
Analytic conductor: |
14.0856 |
Root analytic conductor: |
3.75308 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :1/2), −0.954−0.299i)
|
Particular Values
L(1) |
≈ |
1.591067210 |
L(21) |
≈ |
1.591067210 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.899−1.47i)T |
| 7 | 1 |
good | 5 | 1+(1.19−2.06i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−1.12−1.95i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.37−4.12i)T+(−6.5−11.2i)T2 |
| 17 | 1−4.30T+17T2 |
| 19 | 1−8.59T+19T2 |
| 23 | 1+(0.664−1.15i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.87+6.71i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−0.405+0.702i)T+(−15.5−26.8i)T2 |
| 37 | 1+4.63T+37T2 |
| 41 | 1+(5.00−8.66i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.74+3.01i)T+(−21.5+37.2i)T2 |
| 47 | 1+(2.18+3.78i)T+(−23.5+40.7i)T2 |
| 53 | 1+11.6T+53T2 |
| 59 | 1+(2.40−4.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.575+0.997i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.06+3.57i)T+(−33.5−58.0i)T2 |
| 71 | 1+4.41T+71T2 |
| 73 | 1−12.1T+73T2 |
| 79 | 1+(−4.23−7.33i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.817+1.41i)T+(−41.5+71.8i)T2 |
| 89 | 1−6.34T+89T2 |
| 97 | 1+(5.98+10.3i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.787779796843341147099755689853, −9.106232426065079840212520447728, −7.86632038881775686583076533848, −7.49384265291209321831410650814, −6.62886235806004223610277976367, −5.41547438286584084589029695745, −4.62375272758219644344984676403, −3.62505145891025749528231019118, −3.08874631378687095862182860803, −1.85395951234835193805083400945,
0.57864575001140377987201137754, 1.48339491347311379881444950711, 3.08751551629647152099020237609, 3.52805109951419290894252523989, 5.06628715720092684326323710880, 5.54341221172753516372684457339, 6.72071651821924502786381314161, 7.71419774647337601822774990662, 7.912794711489195619391823134720, 8.867147486039285350804636708741