L(s) = 1 | + (1.05 − 1.37i)3-s + (−0.736 + 1.27i)5-s + (−0.788 − 2.89i)9-s + (2.35 + 4.07i)11-s + (−1.23 + 2.13i)13-s + (0.981 + 2.35i)15-s + 2.88·17-s + 0.763·19-s + (1.12 − 1.94i)23-s + (1.41 + 2.44i)25-s + (−4.81 − 1.95i)27-s + (−0.583 − 1.01i)29-s + (−4.06 + 7.04i)31-s + (8.08 + 1.04i)33-s − 1.62·37-s + ⋯ |
L(s) = 1 | + (0.607 − 0.794i)3-s + (−0.329 + 0.570i)5-s + (−0.262 − 0.964i)9-s + (0.709 + 1.22i)11-s + (−0.341 + 0.592i)13-s + (0.253 + 0.608i)15-s + 0.698·17-s + 0.175·19-s + (0.233 − 0.404i)23-s + (0.282 + 0.489i)25-s + (−0.926 − 0.376i)27-s + (−0.108 − 0.187i)29-s + (−0.730 + 1.26i)31-s + (1.40 + 0.182i)33-s − 0.266·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.904 - 0.426i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.904 - 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.972800100\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.972800100\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.05 + 1.37i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.736 - 1.27i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.35 - 4.07i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.23 - 2.13i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 2.88T + 17T^{2} \) |
| 19 | \( 1 - 0.763T + 19T^{2} \) |
| 23 | \( 1 + (-1.12 + 1.94i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.583 + 1.01i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.06 - 7.04i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 1.62T + 37T^{2} \) |
| 41 | \( 1 + (1.37 - 2.38i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.93 - 8.55i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.406 + 0.704i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 13.1T + 53T^{2} \) |
| 59 | \( 1 + (0.593 - 1.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.30 - 7.45i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.00 + 10.4i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.31T + 71T^{2} \) |
| 73 | \( 1 - 16.1T + 73T^{2} \) |
| 79 | \( 1 + (-6.14 - 10.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.36 + 14.4i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 14.3T + 89T^{2} \) |
| 97 | \( 1 + (3.35 + 5.81i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.342540279255162568009468230804, −8.518250601936546941235918447061, −7.58429920365149922705541002164, −7.02151384634562822009846919511, −6.57070785057751701848767918644, −5.31751771978489603661101618978, −4.18043644921588831470435546634, −3.32493700342369386432188322078, −2.31885024556162471864056995112, −1.29653954849416531084490055388,
0.76225284782453407957670161942, 2.39478651645325707085980130162, 3.54073004453757510665710034666, 3.98888268478179936792139278375, 5.23335757918541685946464639957, 5.67340719256537401192259357353, 7.00716100143022713037310855276, 7.979596646657312015826589567949, 8.480733997686995913424423463686, 9.203223458450899461328836411534