L(s) = 1 | + (1.05 − 1.37i)3-s + (−0.736 + 1.27i)5-s + (−0.788 − 2.89i)9-s + (2.35 + 4.07i)11-s + (−1.23 + 2.13i)13-s + (0.981 + 2.35i)15-s + 2.88·17-s + 0.763·19-s + (1.12 − 1.94i)23-s + (1.41 + 2.44i)25-s + (−4.81 − 1.95i)27-s + (−0.583 − 1.01i)29-s + (−4.06 + 7.04i)31-s + (8.08 + 1.04i)33-s − 1.62·37-s + ⋯ |
L(s) = 1 | + (0.607 − 0.794i)3-s + (−0.329 + 0.570i)5-s + (−0.262 − 0.964i)9-s + (0.709 + 1.22i)11-s + (−0.341 + 0.592i)13-s + (0.253 + 0.608i)15-s + 0.698·17-s + 0.175·19-s + (0.233 − 0.404i)23-s + (0.282 + 0.489i)25-s + (−0.926 − 0.376i)27-s + (−0.108 − 0.187i)29-s + (−0.730 + 1.26i)31-s + (1.40 + 0.182i)33-s − 0.266·37-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.904−0.426i)Λ(2−s)
Λ(s)=(=(1764s/2ΓC(s+1/2)L(s)(0.904−0.426i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.904−0.426i
|
Analytic conductor: |
14.0856 |
Root analytic conductor: |
3.75308 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :1/2), 0.904−0.426i)
|
Particular Values
L(1) |
≈ |
1.972800100 |
L(21) |
≈ |
1.972800100 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.05+1.37i)T |
| 7 | 1 |
good | 5 | 1+(0.736−1.27i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−2.35−4.07i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.23−2.13i)T+(−6.5−11.2i)T2 |
| 17 | 1−2.88T+17T2 |
| 19 | 1−0.763T+19T2 |
| 23 | 1+(−1.12+1.94i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.583+1.01i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.06−7.04i)T+(−15.5−26.8i)T2 |
| 37 | 1+1.62T+37T2 |
| 41 | 1+(1.37−2.38i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.93−8.55i)T+(−21.5+37.2i)T2 |
| 47 | 1+(0.406+0.704i)T+(−23.5+40.7i)T2 |
| 53 | 1−13.1T+53T2 |
| 59 | 1+(0.593−1.02i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.30−7.45i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.00+10.4i)T+(−33.5−58.0i)T2 |
| 71 | 1−9.31T+71T2 |
| 73 | 1−16.1T+73T2 |
| 79 | 1+(−6.14−10.6i)T+(−39.5+68.4i)T2 |
| 83 | 1+(8.36+14.4i)T+(−41.5+71.8i)T2 |
| 89 | 1+14.3T+89T2 |
| 97 | 1+(3.35+5.81i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.342540279255162568009468230804, −8.518250601936546941235918447061, −7.58429920365149922705541002164, −7.02151384634562822009846919511, −6.57070785057751701848767918644, −5.31751771978489603661101618978, −4.18043644921588831470435546634, −3.32493700342369386432188322078, −2.31885024556162471864056995112, −1.29653954849416531084490055388,
0.76225284782453407957670161942, 2.39478651645325707085980130162, 3.54073004453757510665710034666, 3.98888268478179936792139278375, 5.23335757918541685946464639957, 5.67340719256537401192259357353, 7.00716100143022713037310855276, 7.979596646657312015826589567949, 8.480733997686995913424423463686, 9.203223458450899461328836411534