L(s) = 1 | + (−1.56 − 0.746i)3-s + (0.842 − 1.45i)5-s + (1.88 + 2.33i)9-s + (−3.38 + 1.95i)11-s + (5.24 + 3.02i)13-s + (−2.40 + 1.65i)15-s − 0.402·17-s − 0.168i·19-s + (−7.69 − 4.44i)23-s + (1.07 + 1.86i)25-s + (−1.20 − 5.05i)27-s + (−6.15 + 3.55i)29-s + (−5.44 − 3.14i)31-s + (6.74 − 0.525i)33-s − 6.26·37-s + ⋯ |
L(s) = 1 | + (−0.902 − 0.431i)3-s + (0.376 − 0.652i)5-s + (0.628 + 0.778i)9-s + (−1.01 + 0.588i)11-s + (1.45 + 0.839i)13-s + (−0.621 + 0.426i)15-s − 0.0976·17-s − 0.0385i·19-s + (−1.60 − 0.926i)23-s + (0.215 + 0.373i)25-s + (−0.230 − 0.972i)27-s + (−1.14 + 0.659i)29-s + (−0.977 − 0.564i)31-s + (1.17 − 0.0913i)33-s − 1.02·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5847496569\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5847496569\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.56 + 0.746i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.842 + 1.45i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.38 - 1.95i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-5.24 - 3.02i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 0.402T + 17T^{2} \) |
| 19 | \( 1 + 0.168iT - 19T^{2} \) |
| 23 | \( 1 + (7.69 + 4.44i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (6.15 - 3.55i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.44 + 3.14i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.26T + 37T^{2} \) |
| 41 | \( 1 + (1.64 - 2.85i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.80 - 3.12i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.38 - 7.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.71iT - 53T^{2} \) |
| 59 | \( 1 + (-2.25 + 3.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.43 - 2.56i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.95 + 5.11i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 - 6.99iT - 73T^{2} \) |
| 79 | \( 1 + (0.603 + 1.04i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.181 + 0.314i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.77T + 89T^{2} \) |
| 97 | \( 1 + (-0.508 + 0.293i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.513769053738589601788038837930, −8.719065218304145376795696318804, −7.86535037515871522211910498126, −7.07958847538085120645929697908, −6.14829377286220336089982846430, −5.58936384275703769644907796702, −4.72664061944152547350451080646, −3.87984080483920390756244554746, −2.18800663183378830740874382766, −1.36320412147329382305526678779,
0.24818145278534970541957540140, 1.88176204295001027192528452724, 3.32522407753686649790336347278, 3.91576742243472489532784821206, 5.40785595974211491049284878211, 5.68168139779484294659644434784, 6.46053608091570583754817275334, 7.43525341924736947118971213510, 8.290199366196608885530001488438, 9.180444055983000122733650508153