Properties

Label 2-42e2-63.41-c1-0-4
Degree 22
Conductor 17641764
Sign 0.1390.990i-0.139 - 0.990i
Analytic cond. 14.085614.0856
Root an. cond. 3.753083.75308
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.56 − 0.746i)3-s + (0.842 − 1.45i)5-s + (1.88 + 2.33i)9-s + (−3.38 + 1.95i)11-s + (5.24 + 3.02i)13-s + (−2.40 + 1.65i)15-s − 0.402·17-s − 0.168i·19-s + (−7.69 − 4.44i)23-s + (1.07 + 1.86i)25-s + (−1.20 − 5.05i)27-s + (−6.15 + 3.55i)29-s + (−5.44 − 3.14i)31-s + (6.74 − 0.525i)33-s − 6.26·37-s + ⋯
L(s)  = 1  + (−0.902 − 0.431i)3-s + (0.376 − 0.652i)5-s + (0.628 + 0.778i)9-s + (−1.01 + 0.588i)11-s + (1.45 + 0.839i)13-s + (−0.621 + 0.426i)15-s − 0.0976·17-s − 0.0385i·19-s + (−1.60 − 0.926i)23-s + (0.215 + 0.373i)25-s + (−0.230 − 0.972i)27-s + (−1.14 + 0.659i)29-s + (−0.977 − 0.564i)31-s + (1.17 − 0.0913i)33-s − 1.02·37-s + ⋯

Functional equation

Λ(s)=(1764s/2ΓC(s)L(s)=((0.1390.990i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1764s/2ΓC(s+1/2)L(s)=((0.1390.990i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 17641764    =    2232722^{2} \cdot 3^{2} \cdot 7^{2}
Sign: 0.1390.990i-0.139 - 0.990i
Analytic conductor: 14.085614.0856
Root analytic conductor: 3.753083.75308
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1764(293,)\chi_{1764} (293, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1764, ( :1/2), 0.1390.990i)(2,\ 1764,\ (\ :1/2),\ -0.139 - 0.990i)

Particular Values

L(1)L(1) \approx 0.58474965690.5847496569
L(12)L(\frac12) \approx 0.58474965690.5847496569
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(1.56+0.746i)T 1 + (1.56 + 0.746i)T
7 1 1
good5 1+(0.842+1.45i)T+(2.54.33i)T2 1 + (-0.842 + 1.45i)T + (-2.5 - 4.33i)T^{2}
11 1+(3.381.95i)T+(5.59.52i)T2 1 + (3.38 - 1.95i)T + (5.5 - 9.52i)T^{2}
13 1+(5.243.02i)T+(6.5+11.2i)T2 1 + (-5.24 - 3.02i)T + (6.5 + 11.2i)T^{2}
17 1+0.402T+17T2 1 + 0.402T + 17T^{2}
19 1+0.168iT19T2 1 + 0.168iT - 19T^{2}
23 1+(7.69+4.44i)T+(11.5+19.9i)T2 1 + (7.69 + 4.44i)T + (11.5 + 19.9i)T^{2}
29 1+(6.153.55i)T+(14.525.1i)T2 1 + (6.15 - 3.55i)T + (14.5 - 25.1i)T^{2}
31 1+(5.44+3.14i)T+(15.5+26.8i)T2 1 + (5.44 + 3.14i)T + (15.5 + 26.8i)T^{2}
37 1+6.26T+37T2 1 + 6.26T + 37T^{2}
41 1+(1.642.85i)T+(20.535.5i)T2 1 + (1.64 - 2.85i)T + (-20.5 - 35.5i)T^{2}
43 1+(1.803.12i)T+(21.5+37.2i)T2 1 + (-1.80 - 3.12i)T + (-21.5 + 37.2i)T^{2}
47 1+(4.387.59i)T+(23.5+40.7i)T2 1 + (-4.38 - 7.59i)T + (-23.5 + 40.7i)T^{2}
53 15.71iT53T2 1 - 5.71iT - 53T^{2}
59 1+(2.25+3.89i)T+(29.551.0i)T2 1 + (-2.25 + 3.89i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.432.56i)T+(30.552.8i)T2 1 + (4.43 - 2.56i)T + (30.5 - 52.8i)T^{2}
67 1+(2.95+5.11i)T+(33.558.0i)T2 1 + (-2.95 + 5.11i)T + (-33.5 - 58.0i)T^{2}
71 111.4iT71T2 1 - 11.4iT - 71T^{2}
73 16.99iT73T2 1 - 6.99iT - 73T^{2}
79 1+(0.603+1.04i)T+(39.5+68.4i)T2 1 + (0.603 + 1.04i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.181+0.314i)T+(41.5+71.8i)T2 1 + (0.181 + 0.314i)T + (-41.5 + 71.8i)T^{2}
89 1+2.77T+89T2 1 + 2.77T + 89T^{2}
97 1+(0.508+0.293i)T+(48.584.0i)T2 1 + (-0.508 + 0.293i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.513769053738589601788038837930, −8.719065218304145376795696318804, −7.86535037515871522211910498126, −7.07958847538085120645929697908, −6.14829377286220336089982846430, −5.58936384275703769644907796702, −4.72664061944152547350451080646, −3.87984080483920390756244554746, −2.18800663183378830740874382766, −1.36320412147329382305526678779, 0.24818145278534970541957540140, 1.88176204295001027192528452724, 3.32522407753686649790336347278, 3.91576742243472489532784821206, 5.40785595974211491049284878211, 5.68168139779484294659644434784, 6.46053608091570583754817275334, 7.43525341924736947118971213510, 8.290199366196608885530001488438, 9.180444055983000122733650508153

Graph of the ZZ-function along the critical line