L(s) = 1 | + (7 − 12.1i)5-s + (2 + 3.46i)11-s + 54·13-s + (−7 − 12.1i)17-s + (−46 + 79.6i)19-s + (−76 + 131. i)23-s + (−35.5 − 61.4i)25-s + 106·29-s + (72 + 124. i)31-s + (−79 + 136. i)37-s + 390·41-s − 508·43-s + (−264 + 457. i)47-s + (303 + 524. i)53-s + 56·55-s + ⋯ |
L(s) = 1 | + (0.626 − 1.08i)5-s + (0.0548 + 0.0949i)11-s + 1.15·13-s + (−0.0998 − 0.172i)17-s + (−0.555 + 0.962i)19-s + (−0.689 + 1.19i)23-s + (−0.284 − 0.491i)25-s + 0.678·29-s + (0.417 + 0.722i)31-s + (−0.351 + 0.607i)37-s + 1.48·41-s − 1.80·43-s + (−0.819 + 1.41i)47-s + (0.785 + 1.36i)53-s + 0.137·55-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.605−0.795i)Λ(4−s)
Λ(s)=(=(1764s/2ΓC(s+3/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
104.079 |
Root analytic conductor: |
10.2019 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(1549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :3/2), 0.605−0.795i)
|
Particular Values
L(2) |
≈ |
2.075661005 |
L(21) |
≈ |
2.075661005 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−7+12.1i)T+(−62.5−108.i)T2 |
| 11 | 1+(−2−3.46i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−54T+2.19e3T2 |
| 17 | 1+(7+12.1i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(46−79.6i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(76−131.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−106T+2.43e4T2 |
| 31 | 1+(−72−124.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(79−136.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−390T+6.89e4T2 |
| 43 | 1+508T+7.95e4T2 |
| 47 | 1+(264−457.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−303−524.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(182+315.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(339−587.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(422+730.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−8T+3.57e5T2 |
| 73 | 1+(−211−365.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(192−332.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−548T+5.71e5T2 |
| 89 | 1+(−597+1.03e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+1.50e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.000180299755715829088376851785, −8.390050338117211424068514403469, −7.66176092919759085609032099807, −6.39334461444201393752614273754, −5.89016383269228181608208425200, −4.98732680325032748249532463194, −4.17001431250774838681421756755, −3.14596983837836529175548715100, −1.71262069853415783459814326454, −1.14173216445116802085574670016,
0.44946874433453663507770217237, 1.91467595197289096487872979518, 2.71661798743668879415446923587, 3.69206658365482886912808801825, 4.66046360095585425227876365261, 5.85178418090096910570265142813, 6.46381411334078012928968298372, 6.95532128416389802725733227029, 8.187958782572275638078661158058, 8.716513940347302091798096182462