L(s) = 1 | + 2.75i·2-s + i·3-s − 5.61·4-s + (−2.05 + 0.889i)5-s − 2.75·6-s + i·7-s − 9.96i·8-s − 9-s + (−2.45 − 5.66i)10-s + 5.12·11-s − 5.61i·12-s − 3.06i·13-s − 2.75·14-s + (−0.889 − 2.05i)15-s + 16.2·16-s + i·17-s + ⋯ |
L(s) = 1 | + 1.95i·2-s + 0.577i·3-s − 2.80·4-s + (−0.917 + 0.397i)5-s − 1.12·6-s + 0.377i·7-s − 3.52i·8-s − 0.333·9-s + (−0.775 − 1.79i)10-s + 1.54·11-s − 1.62i·12-s − 0.849i·13-s − 0.737·14-s + (−0.229 − 0.529i)15-s + 4.07·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.397 - 0.917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1785 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.397 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.049593169\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049593169\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 + (2.05 - 0.889i)T \) |
| 7 | \( 1 - iT \) |
| 17 | \( 1 - iT \) |
good | 2 | \( 1 - 2.75iT - 2T^{2} \) |
| 11 | \( 1 - 5.12T + 11T^{2} \) |
| 13 | \( 1 + 3.06iT - 13T^{2} \) |
| 19 | \( 1 - 4.71T + 19T^{2} \) |
| 23 | \( 1 + 9.27iT - 23T^{2} \) |
| 29 | \( 1 - 0.219T + 29T^{2} \) |
| 31 | \( 1 - 1.84T + 31T^{2} \) |
| 37 | \( 1 + 9.19iT - 37T^{2} \) |
| 41 | \( 1 + 8.15T + 41T^{2} \) |
| 43 | \( 1 - 4.99iT - 43T^{2} \) |
| 47 | \( 1 + 9.93iT - 47T^{2} \) |
| 53 | \( 1 + 2.34iT - 53T^{2} \) |
| 59 | \( 1 + 4.05T + 59T^{2} \) |
| 61 | \( 1 - 4.39T + 61T^{2} \) |
| 67 | \( 1 + 7.20iT - 67T^{2} \) |
| 71 | \( 1 + 2.47T + 71T^{2} \) |
| 73 | \( 1 - 3.44iT - 73T^{2} \) |
| 79 | \( 1 - 11.4T + 79T^{2} \) |
| 83 | \( 1 + 8.57iT - 83T^{2} \) |
| 89 | \( 1 - 0.890T + 89T^{2} \) |
| 97 | \( 1 - 0.845iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.168832164383297242581978916645, −8.493949662478052621655804399457, −7.996321342309425180694870711417, −6.99974489747021083596913314993, −6.50853613458764760614753448691, −5.63378711574212705797694332485, −4.76591998305137046350254865013, −4.01425030343704692991711906992, −3.27975829481015885559435281677, −0.52996619752673975603179502727,
1.08687042286927088933088466555, 1.56440825876175274764540349901, 3.11584586218547652920908827461, 3.73680279227698435194480665039, 4.47714982337864102126765923883, 5.37659661357323649551494784319, 6.79465754974739492846282807167, 7.73635739615574185318189698191, 8.541980651224765921184048424862, 9.366635219797403419037652680796