L(s) = 1 | − 2i·3-s + 3.46·5-s + (2 − 1.73i)7-s − 9-s − 3.46·11-s + 3.46·13-s − 6.92i·15-s − 2i·19-s + (−3.46 − 4i)21-s + 3.46i·23-s + 6.99·25-s − 4i·27-s − 6i·29-s − 8·31-s + 6.92i·33-s + ⋯ |
L(s) = 1 | − 1.15i·3-s + 1.54·5-s + (0.755 − 0.654i)7-s − 0.333·9-s − 1.04·11-s + 0.960·13-s − 1.78i·15-s − 0.458i·19-s + (−0.755 − 0.872i)21-s + 0.722i·23-s + 1.39·25-s − 0.769i·27-s − 1.11i·29-s − 1.43·31-s + 1.20i·33-s + ⋯ |
Λ(s)=(=(1792s/2ΓC(s)L(s)(−0.0716+0.997i)Λ(2−s)
Λ(s)=(=(1792s/2ΓC(s+1/2)L(s)(−0.0716+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
1792
= 28⋅7
|
Sign: |
−0.0716+0.997i
|
Analytic conductor: |
14.3091 |
Root analytic conductor: |
3.78274 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1792(895,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1792, ( :1/2), −0.0716+0.997i)
|
Particular Values
L(1) |
≈ |
2.537093725 |
L(21) |
≈ |
2.537093725 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−2+1.73i)T |
good | 3 | 1+2iT−3T2 |
| 5 | 1−3.46T+5T2 |
| 11 | 1+3.46T+11T2 |
| 13 | 1−3.46T+13T2 |
| 17 | 1−17T2 |
| 19 | 1+2iT−19T2 |
| 23 | 1−3.46iT−23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−6.92iT−41T2 |
| 43 | 1−10.3T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−3.46T+61T2 |
| 67 | 1−3.46T+67T2 |
| 71 | 1+3.46iT−71T2 |
| 73 | 1+6.92iT−73T2 |
| 79 | 1−3.46iT−79T2 |
| 83 | 1−6iT−83T2 |
| 89 | 1−6.92iT−89T2 |
| 97 | 1−13.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.084427067543730269907437332285, −8.045217027045244029392061587241, −7.53819140957394053979307362786, −6.69008259656637490972590677662, −5.88167872646949444854727333832, −5.31390039354101702332540263653, −4.12331770300204152270433532727, −2.62292988788677763959578900250, −1.83957233770709877289524295112, −1.01000571017339276369949623800,
1.60488561404812693188391975590, 2.50588892202341957149153976129, 3.65158592882777264273271355498, 4.77484478179335369302540123919, 5.46332733702856995997139578999, 5.84598974630436377765673290252, 7.03166766925932660887166896231, 8.215814195159878537687215181709, 8.945979307412727425448825149928, 9.427441147989221749465342198191