L(s) = 1 | + (1.97 + 0.321i)2-s + (3.79 + 1.26i)4-s + (0.196 + 4.99i)5-s + (−8.42 + 8.42i)7-s + (7.08 + 3.72i)8-s + (−1.21 + 9.92i)10-s + 0.926·11-s + (8.10 − 8.10i)13-s + (−19.3 + 13.9i)14-s + (12.7 + 9.62i)16-s + (20.7 − 20.7i)17-s − 13.8·19-s + (−5.59 + 19.2i)20-s + (1.82 + 0.297i)22-s + (22.9 − 22.9i)23-s + ⋯ |
L(s) = 1 | + (0.987 + 0.160i)2-s + (0.948 + 0.317i)4-s + (0.0393 + 0.999i)5-s + (−1.20 + 1.20i)7-s + (0.885 + 0.465i)8-s + (−0.121 + 0.992i)10-s + 0.0841·11-s + (0.623 − 0.623i)13-s + (−1.38 + 0.994i)14-s + (0.798 + 0.601i)16-s + (1.21 − 1.21i)17-s − 0.728·19-s + (−0.279 + 0.960i)20-s + (0.0830 + 0.0135i)22-s + (0.999 − 0.999i)23-s + ⋯ |
Λ(s)=(=(180s/2ΓC(s)L(s)(0.338−0.940i)Λ(3−s)
Λ(s)=(=(180s/2ΓC(s+1)L(s)(0.338−0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
180
= 22⋅32⋅5
|
Sign: |
0.338−0.940i
|
Analytic conductor: |
4.90464 |
Root analytic conductor: |
2.21464 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ180(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 180, ( :1), 0.338−0.940i)
|
Particular Values
L(23) |
≈ |
2.05557+1.44506i |
L(21) |
≈ |
2.05557+1.44506i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.97−0.321i)T |
| 3 | 1 |
| 5 | 1+(−0.196−4.99i)T |
good | 7 | 1+(8.42−8.42i)T−49iT2 |
| 11 | 1−0.926T+121T2 |
| 13 | 1+(−8.10+8.10i)T−169iT2 |
| 17 | 1+(−20.7+20.7i)T−289iT2 |
| 19 | 1+13.8T+361T2 |
| 23 | 1+(−22.9+22.9i)T−529iT2 |
| 29 | 1−12.0T+841T2 |
| 31 | 1−27.6iT−961T2 |
| 37 | 1+(−14.0−14.0i)T+1.36e3iT2 |
| 41 | 1−10.4iT−1.68e3T2 |
| 43 | 1+(44.6+44.6i)T+1.84e3iT2 |
| 47 | 1+(8.50+8.50i)T+2.20e3iT2 |
| 53 | 1+(7.70+7.70i)T+2.80e3iT2 |
| 59 | 1−12.6iT−3.48e3T2 |
| 61 | 1+13.7T+3.72e3T2 |
| 67 | 1+(−75.3+75.3i)T−4.48e3iT2 |
| 71 | 1+13.5T+5.04e3T2 |
| 73 | 1+(43.6−43.6i)T−5.32e3iT2 |
| 79 | 1−71.8T+6.24e3T2 |
| 83 | 1+(21.6−21.6i)T−6.88e3iT2 |
| 89 | 1+98.6T+7.92e3T2 |
| 97 | 1+(27.6+27.6i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62150993695955965134014942311, −11.91512149591311785392135354701, −10.80791584523132748900010537822, −9.837477757679865334745240322437, −8.423751241061476255953665259901, −6.97610598273763999279740339846, −6.26492924317235747883358040843, −5.25592948810283913383735222094, −3.35219707055608948171136186004, −2.69892354521630943315189029738,
1.27230976356102384405372460237, 3.49682128438499588379062787015, 4.30201166560570249179276985096, 5.77209815290378162704273707937, 6.70955832974120708705070813793, 7.945263257241490827093803455140, 9.473721488731506901369571263489, 10.34605713940288384891387334830, 11.42707084797511519454788416479, 12.63043419369383067369930684028