L(s) = 1 | + (0.537 + 1.92i)2-s + (−3.42 + 2.06i)4-s + (−2.15 − 4.51i)5-s + (−4.16 − 4.16i)7-s + (−5.82 − 5.48i)8-s + (7.54 − 6.56i)10-s − 21.7·11-s + (3.43 + 3.43i)13-s + (5.78 − 10.2i)14-s + (7.43 − 14.1i)16-s + (−13.0 − 13.0i)17-s + 19.7·19-s + (16.7 + 11.0i)20-s + (−11.6 − 41.9i)22-s + (17.1 + 17.1i)23-s + ⋯ |
L(s) = 1 | + (0.268 + 0.963i)2-s + (−0.855 + 0.517i)4-s + (−0.430 − 0.902i)5-s + (−0.594 − 0.594i)7-s + (−0.728 − 0.685i)8-s + (0.754 − 0.656i)10-s − 1.97·11-s + (0.264 + 0.264i)13-s + (0.413 − 0.732i)14-s + (0.464 − 0.885i)16-s + (−0.767 − 0.767i)17-s + 1.03·19-s + (0.835 + 0.550i)20-s + (−0.531 − 1.90i)22-s + (0.743 + 0.743i)23-s + ⋯ |
Λ(s)=(=(180s/2ΓC(s)L(s)(−0.179+0.983i)Λ(3−s)
Λ(s)=(=(180s/2ΓC(s+1)L(s)(−0.179+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
180
= 22⋅32⋅5
|
Sign: |
−0.179+0.983i
|
Analytic conductor: |
4.90464 |
Root analytic conductor: |
2.21464 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ180(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 180, ( :1), −0.179+0.983i)
|
Particular Values
L(23) |
≈ |
0.241700−0.289886i |
L(21) |
≈ |
0.241700−0.289886i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.537−1.92i)T |
| 3 | 1 |
| 5 | 1+(2.15+4.51i)T |
good | 7 | 1+(4.16+4.16i)T+49iT2 |
| 11 | 1+21.7T+121T2 |
| 13 | 1+(−3.43−3.43i)T+169iT2 |
| 17 | 1+(13.0+13.0i)T+289iT2 |
| 19 | 1−19.7T+361T2 |
| 23 | 1+(−17.1−17.1i)T+529iT2 |
| 29 | 1+20.8T+841T2 |
| 31 | 1+12.9iT−961T2 |
| 37 | 1+(21.0−21.0i)T−1.36e3iT2 |
| 41 | 1+58.0iT−1.68e3T2 |
| 43 | 1+(11.2−11.2i)T−1.84e3iT2 |
| 47 | 1+(4.90−4.90i)T−2.20e3iT2 |
| 53 | 1+(52.7−52.7i)T−2.80e3iT2 |
| 59 | 1+72.9iT−3.48e3T2 |
| 61 | 1−2.48T+3.72e3T2 |
| 67 | 1+(0.141+0.141i)T+4.48e3iT2 |
| 71 | 1+16.7T+5.04e3T2 |
| 73 | 1+(28.6+28.6i)T+5.32e3iT2 |
| 79 | 1+111.T+6.24e3T2 |
| 83 | 1+(−99.0−99.0i)T+6.88e3iT2 |
| 89 | 1−47.0T+7.92e3T2 |
| 97 | 1+(−49.4+49.4i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.57087556024491556034162685994, −11.28069342435312403711526673005, −9.867495804550926127182484447306, −8.936996629804878776884124520745, −7.80074920730372764254656495777, −7.13975761949688160584443210812, −5.54396726525615958697525819951, −4.74913188798492732260555287755, −3.33174738619211621137901158304, −0.19690213006866818465244202301,
2.50913372303506341699906715921, 3.35808986507978360796935762522, 5.00794389846791223912161927269, 6.16326408063781655359540922555, 7.69469736108558190458548125754, 8.829602242815632390982021205982, 10.13820937634531936201628681143, 10.71946275133329164601257329613, 11.61392111070846241019114411938, 12.81993271685713434011326837465