L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 1.41i·11-s + 1.41·14-s − 1.00·16-s + (−1.00 + 1.00i)22-s + (1.00 + 1.00i)28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 1.41·44-s − i·49-s + 1.41i·56-s + (1.00 + 1.00i)58-s − 1.41·59-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 1.41i·11-s + 1.41·14-s − 1.00·16-s + (−1.00 + 1.00i)22-s + (1.00 + 1.00i)28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 1.41·44-s − i·49-s + 1.41i·56-s + (1.00 + 1.00i)58-s − 1.41·59-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.229−0.973i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.229−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
0.229−0.973i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(1693,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), 0.229−0.973i)
|
Particular Values
L(21) |
≈ |
1.772265496 |
L(21) |
≈ |
1.772265496 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−1+i)T−iT2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1−iT2 |
| 17 | 1−iT2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1−1.41T+T2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1−iT2 |
| 53 | 1−iT2 |
| 59 | 1+1.41T+T2 |
| 61 | 1−T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(1+i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1+(1.41−1.41i)T−iT2 |
| 89 | 1−T2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.590823972458598816218391845690, −8.539631843879044782965765458607, −7.83371924798380629531989275380, −7.22274378583398214906838951991, −6.60424128555511810470876836844, −5.47740960252324958243663073236, −4.49913603736955025405778657181, −4.33701070402582716012451235259, −2.97085972300348218395614389696, −1.69108136230916245936672200532,
1.25857026903807500460493415343, 2.45130827950648851578163056609, 3.23167243811718331006799878602, 4.36871636935297624993249702586, 5.19778009045072591400710342222, 5.83666076838975543748442152919, 6.58048612104266458918414747684, 7.929705517516424324645840620353, 8.655251282167984651836593106146, 9.238758406862070055022440777792