L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 1.41i·11-s + 1.41·14-s − 1.00·16-s + (−1.00 + 1.00i)22-s + (1.00 + 1.00i)28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 1.41·44-s − i·49-s + 1.41i·56-s + (1.00 + 1.00i)58-s − 1.41·59-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 1.41i·11-s + 1.41·14-s − 1.00·16-s + (−1.00 + 1.00i)22-s + (1.00 + 1.00i)28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 1.41·44-s − i·49-s + 1.41i·56-s + (1.00 + 1.00i)58-s − 1.41·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.772265496\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.772265496\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1 + i)T - iT^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + 1.41T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.590823972458598816218391845690, −8.539631843879044782965765458607, −7.83371924798380629531989275380, −7.22274378583398214906838951991, −6.60424128555511810470876836844, −5.47740960252324958243663073236, −4.49913603736955025405778657181, −4.33701070402582716012451235259, −2.97085972300348218395614389696, −1.69108136230916245936672200532,
1.25857026903807500460493415343, 2.45130827950648851578163056609, 3.23167243811718331006799878602, 4.36871636935297624993249702586, 5.19778009045072591400710342222, 5.83666076838975543748442152919, 6.58048612104266458918414747684, 7.929705517516424324645840620353, 8.655251282167984651836593106146, 9.238758406862070055022440777792