L(s) = 1 | − 2·7-s + 2·11-s − 4·13-s + 2·17-s + 4·19-s − 8·23-s − 10·29-s + 4·31-s + 8·43-s − 8·47-s − 3·49-s − 6·53-s − 14·59-s − 14·61-s + 4·67-s + 12·71-s − 6·73-s − 4·77-s − 12·79-s − 4·83-s − 12·89-s + 8·91-s + 14·97-s + 6·101-s + 14·103-s + 12·107-s + 2·109-s + ⋯ |
L(s) = 1 | − 0.755·7-s + 0.603·11-s − 1.10·13-s + 0.485·17-s + 0.917·19-s − 1.66·23-s − 1.85·29-s + 0.718·31-s + 1.21·43-s − 1.16·47-s − 3/7·49-s − 0.824·53-s − 1.82·59-s − 1.79·61-s + 0.488·67-s + 1.42·71-s − 0.702·73-s − 0.455·77-s − 1.35·79-s − 0.439·83-s − 1.27·89-s + 0.838·91-s + 1.42·97-s + 0.597·101-s + 1.37·103-s + 1.16·107-s + 0.191·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 8 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.145483992614508398241889104525, −7.86913692024763332060144721483, −7.45065071242999963428388622511, −6.39891699284620141219634951096, −5.77511827593267937653674507024, −4.74288937907914556693961913412, −3.76449264160662743485897571369, −2.90937812661793913025246512240, −1.67682860274284527232402663231, 0,
1.67682860274284527232402663231, 2.90937812661793913025246512240, 3.76449264160662743485897571369, 4.74288937907914556693961913412, 5.77511827593267937653674507024, 6.39891699284620141219634951096, 7.45065071242999963428388622511, 7.86913692024763332060144721483, 9.145483992614508398241889104525