Properties

Label 2-1800-1.1-c3-0-23
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 35.0·7-s − 25.6·11-s − 37.6·13-s − 95.7·17-s + 50.8·19-s + 110.·23-s + 54.5·29-s + 198.·31-s − 266.·37-s − 103.·41-s − 108·43-s + 597.·47-s + 887.·49-s − 305.·53-s + 223.·59-s + 485.·61-s + 876.·67-s − 585.·71-s + 1.13e3·73-s − 899.·77-s + 685.·79-s + 305.·83-s − 887.·89-s − 1.32e3·91-s + 556.·97-s − 1.59e3·101-s − 1.35e3·103-s + ⋯
L(s)  = 1  + 1.89·7-s − 0.702·11-s − 0.803·13-s − 1.36·17-s + 0.614·19-s + 1.00·23-s + 0.349·29-s + 1.14·31-s − 1.18·37-s − 0.395·41-s − 0.383·43-s + 1.85·47-s + 2.58·49-s − 0.792·53-s + 0.493·59-s + 1.01·61-s + 1.59·67-s − 0.978·71-s + 1.82·73-s − 1.33·77-s + 0.975·79-s + 0.404·83-s − 1.05·89-s − 1.52·91-s + 0.582·97-s − 1.56·101-s − 1.29·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.570275207\)
\(L(\frac12)\) \(\approx\) \(2.570275207\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 35.0T + 343T^{2} \)
11 \( 1 + 25.6T + 1.33e3T^{2} \)
13 \( 1 + 37.6T + 2.19e3T^{2} \)
17 \( 1 + 95.7T + 4.91e3T^{2} \)
19 \( 1 - 50.8T + 6.85e3T^{2} \)
23 \( 1 - 110.T + 1.21e4T^{2} \)
29 \( 1 - 54.5T + 2.43e4T^{2} \)
31 \( 1 - 198.T + 2.97e4T^{2} \)
37 \( 1 + 266.T + 5.06e4T^{2} \)
41 \( 1 + 103.T + 6.89e4T^{2} \)
43 \( 1 + 108T + 7.95e4T^{2} \)
47 \( 1 - 597.T + 1.03e5T^{2} \)
53 \( 1 + 305.T + 1.48e5T^{2} \)
59 \( 1 - 223.T + 2.05e5T^{2} \)
61 \( 1 - 485.T + 2.26e5T^{2} \)
67 \( 1 - 876.T + 3.00e5T^{2} \)
71 \( 1 + 585.T + 3.57e5T^{2} \)
73 \( 1 - 1.13e3T + 3.89e5T^{2} \)
79 \( 1 - 685.T + 4.93e5T^{2} \)
83 \( 1 - 305.T + 5.71e5T^{2} \)
89 \( 1 + 887.T + 7.04e5T^{2} \)
97 \( 1 - 556.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.688414636296261576290979469402, −8.209161153596871372877784083059, −7.39748835658298214572321304864, −6.71705555981179115729392254027, −5.27171269892024354760214251897, −5.01244367438998317976151494092, −4.14631113891326389578988216549, −2.69835740062118030375420233112, −1.94006380646689545956139097520, −0.76345755174280897898008155279, 0.76345755174280897898008155279, 1.94006380646689545956139097520, 2.69835740062118030375420233112, 4.14631113891326389578988216549, 5.01244367438998317976151494092, 5.27171269892024354760214251897, 6.71705555981179115729392254027, 7.39748835658298214572321304864, 8.209161153596871372877784083059, 8.688414636296261576290979469402

Graph of the $Z$-function along the critical line