L(s) = 1 | + 6·7-s − 8·11-s + 14·13-s + 86·19-s − 128·23-s − 344·29-s − 158·31-s + 36·37-s + 244·41-s + 390·43-s − 756·47-s + 65·49-s − 268·53-s − 4·59-s − 1.03e3·61-s + 1.62e3·67-s + 276·71-s + 644·73-s − 48·77-s − 944·79-s + 484·83-s − 2.22e3·89-s + 84·91-s + 510·97-s + 844·101-s + 544·103-s − 3.22e3·107-s + ⋯ |
L(s) = 1 | + 0.323·7-s − 0.219·11-s + 0.298·13-s + 1.03·19-s − 1.16·23-s − 2.20·29-s − 0.915·31-s + 0.159·37-s + 0.929·41-s + 1.38·43-s − 2.34·47-s + 0.189·49-s − 0.694·53-s − 0.00882·59-s − 2.17·61-s + 2.95·67-s + 0.461·71-s + 1.03·73-s − 0.0710·77-s − 1.34·79-s + 0.640·83-s − 2.64·89-s + 0.0967·91-s + 0.533·97-s + 0.831·101-s + 0.520·103-s − 2.90·107-s + ⋯ |
Λ(s)=(=(3240000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(3240000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3240000
= 26⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
11279.1 |
Root analytic conductor: |
10.3055 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 3240000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−6T−29T2−6p3T3+p6T4 |
| 11 | D4 | 1+8T+1954T2+8p3T3+p6T4 |
| 13 | D4 | 1−14T+119pT2−14p3T3+p6T4 |
| 17 | C22 | 1+9102T2+p6T4 |
| 19 | D4 | 1−86T+9051T2−86p3T3+p6T4 |
| 23 | D4 | 1+128T+21914T2+128p3T3+p6T4 |
| 29 | D4 | 1+344T+2078pT2+344p3T3+p6T4 |
| 31 | D4 | 1+158T+30347T2+158p3T3+p6T4 |
| 37 | D4 | 1−36T+75566T2−36p3T3+p6T4 |
| 41 | D4 | 1−244T+117250T2−244p3T3+p6T4 |
| 43 | D4 | 1−390T+161563T2−390p3T3+p6T4 |
| 47 | D4 | 1+756T+338946T2+756p3T3+p6T4 |
| 53 | D4 | 1+268T+280234T2+268p3T3+p6T4 |
| 59 | D4 | 1+4T+364426T2+4p3T3+p6T4 |
| 61 | D4 | 1+1034T+674915T2+1034p3T3+p6T4 |
| 67 | D4 | 1−1622T+1200603T2−1622p3T3+p6T4 |
| 71 | D4 | 1−276T−53570T2−276p3T3+p6T4 |
| 73 | D4 | 1−644T+809318T2−644p3T3+p6T4 |
| 79 | D4 | 1+944T+919262T2+944p3T3+p6T4 |
| 83 | D4 | 1−484T+460762T2−484p3T3+p6T4 |
| 89 | D4 | 1+2224T+2634898T2+2224p3T3+p6T4 |
| 97 | D4 | 1−510T+1148995T2−510p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.659200095688868914838211273992, −8.327845637601000965541646538534, −7.74596938661892142430171237271, −7.63271301677198280093620835408, −7.36845267733074308784211305340, −6.65650270458210145966859831172, −6.32072133532544498638575214906, −5.85651619189362015616890196507, −5.43198688167205370744747466064, −5.18899958515447941859443083447, −4.60974227012599161546700276652, −4.06942302483626015670741981293, −3.59817969884900890684348407779, −3.41763886745951370487965166031, −2.48761835565738179474531515071, −2.26509670378497213469723037291, −1.43356289792186708397806462179, −1.21511692913021293780627915718, 0, 0,
1.21511692913021293780627915718, 1.43356289792186708397806462179, 2.26509670378497213469723037291, 2.48761835565738179474531515071, 3.41763886745951370487965166031, 3.59817969884900890684348407779, 4.06942302483626015670741981293, 4.60974227012599161546700276652, 5.18899958515447941859443083447, 5.43198688167205370744747466064, 5.85651619189362015616890196507, 6.32072133532544498638575214906, 6.65650270458210145966859831172, 7.36845267733074308784211305340, 7.63271301677198280093620835408, 7.74596938661892142430171237271, 8.327845637601000965541646538534, 8.659200095688868914838211273992