L(s) = 1 | − 34i·7-s − 16·11-s − 58i·13-s + 70i·17-s − 4·19-s − 134i·23-s − 242·29-s + 100·31-s − 438i·37-s + 138·41-s − 178i·43-s − 22i·47-s − 813·49-s + 162i·53-s − 268·59-s + ⋯ |
L(s) = 1 | − 1.83i·7-s − 0.438·11-s − 1.23i·13-s + 0.998i·17-s − 0.0482·19-s − 1.21i·23-s − 1.54·29-s + 0.579·31-s − 1.94i·37-s + 0.525·41-s − 0.631i·43-s − 0.0682i·47-s − 2.37·49-s + 0.419i·53-s − 0.591·59-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
106.203 |
Root analytic conductor: |
10.3055 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
≈ |
0.8023436708 |
L(21) |
≈ |
0.8023436708 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+34iT−343T2 |
| 11 | 1+16T+1.33e3T2 |
| 13 | 1+58iT−2.19e3T2 |
| 17 | 1−70iT−4.91e3T2 |
| 19 | 1+4T+6.85e3T2 |
| 23 | 1+134iT−1.21e4T2 |
| 29 | 1+242T+2.43e4T2 |
| 31 | 1−100T+2.97e4T2 |
| 37 | 1+438iT−5.06e4T2 |
| 41 | 1−138T+6.89e4T2 |
| 43 | 1+178iT−7.95e4T2 |
| 47 | 1+22iT−1.03e5T2 |
| 53 | 1−162iT−1.48e5T2 |
| 59 | 1+268T+2.05e5T2 |
| 61 | 1−250T+2.26e5T2 |
| 67 | 1−422iT−3.00e5T2 |
| 71 | 1−852T+3.57e5T2 |
| 73 | 1+306iT−3.89e5T2 |
| 79 | 1−456T+4.93e5T2 |
| 83 | 1−434iT−5.71e5T2 |
| 89 | 1+726T+7.04e5T2 |
| 97 | 1−1.37e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.216653917690370161414310019503, −7.70824885489226415366625975491, −7.01702403633827120924261003847, −6.07891544147464450692316539687, −5.18062215942209140810155891597, −4.11095301543375202653994383317, −3.60834072190163192861077403549, −2.33241406423316551513256639311, −0.986169811466296005768752808220, −0.18587571312521825345759844268,
1.60949101075104289735804464423, 2.45697838985817334358055238736, 3.32107028601643397210609178351, 4.64639228900083435063532685245, 5.34619753767099391865582756977, 6.08439767770628909758181768335, 6.93885057789568231693330367550, 7.904493480950619413955930623874, 8.655594404750326920676172206107, 9.497600651252117366081922348247