L(s) = 1 | + 1.66·2-s + 1.15·3-s + 0.770·4-s + 5-s + 1.93·6-s − 2.43·7-s − 2.04·8-s − 1.65·9-s + 1.66·10-s − 5.75·11-s + 0.893·12-s + 1.59·13-s − 4.05·14-s + 1.15·15-s − 4.94·16-s − 5.98·17-s − 2.75·18-s + 0.770·20-s − 2.82·21-s − 9.57·22-s − 0.940·23-s − 2.37·24-s + 25-s + 2.65·26-s − 5.39·27-s − 1.87·28-s − 2.61·29-s + ⋯ |
L(s) = 1 | + 1.17·2-s + 0.669·3-s + 0.385·4-s + 0.447·5-s + 0.788·6-s − 0.920·7-s − 0.723·8-s − 0.551·9-s + 0.526·10-s − 1.73·11-s + 0.258·12-s + 0.442·13-s − 1.08·14-s + 0.299·15-s − 1.23·16-s − 1.45·17-s − 0.649·18-s + 0.172·20-s − 0.616·21-s − 2.04·22-s − 0.196·23-s − 0.484·24-s + 0.200·25-s + 0.520·26-s − 1.03·27-s − 0.354·28-s − 0.486·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - 1.66T + 2T^{2} \) |
| 3 | \( 1 - 1.15T + 3T^{2} \) |
| 7 | \( 1 + 2.43T + 7T^{2} \) |
| 11 | \( 1 + 5.75T + 11T^{2} \) |
| 13 | \( 1 - 1.59T + 13T^{2} \) |
| 17 | \( 1 + 5.98T + 17T^{2} \) |
| 23 | \( 1 + 0.940T + 23T^{2} \) |
| 29 | \( 1 + 2.61T + 29T^{2} \) |
| 31 | \( 1 - 5.26T + 31T^{2} \) |
| 37 | \( 1 - 2.89T + 37T^{2} \) |
| 41 | \( 1 - 6.31T + 41T^{2} \) |
| 43 | \( 1 - 4.53T + 43T^{2} \) |
| 47 | \( 1 - 8.95T + 47T^{2} \) |
| 53 | \( 1 - 2.19T + 53T^{2} \) |
| 59 | \( 1 - 10.7T + 59T^{2} \) |
| 61 | \( 1 + 10.5T + 61T^{2} \) |
| 67 | \( 1 + 1.00T + 67T^{2} \) |
| 71 | \( 1 + 8.83T + 71T^{2} \) |
| 73 | \( 1 + 10.2T + 73T^{2} \) |
| 79 | \( 1 + 7.60T + 79T^{2} \) |
| 83 | \( 1 - 3.11T + 83T^{2} \) |
| 89 | \( 1 - 11.1T + 89T^{2} \) |
| 97 | \( 1 + 4.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.924117514826164283202040941747, −8.172174757551485644000941482716, −7.14427051657132948486257406315, −6.07655783799814774466721230009, −5.72764270394373176427265263489, −4.69172659591841668354774507392, −3.82110276363225392706712260288, −2.69431846628208284459932820864, −2.54905147759130759838841325908, 0,
2.54905147759130759838841325908, 2.69431846628208284459932820864, 3.82110276363225392706712260288, 4.69172659591841668354774507392, 5.72764270394373176427265263489, 6.07655783799814774466721230009, 7.14427051657132948486257406315, 8.172174757551485644000941482716, 8.924117514826164283202040941747