L(s) = 1 | − 2.37i·2-s − 2.28i·3-s − 3.62·4-s + (1.17 − 1.90i)5-s − 5.41·6-s − 1.63i·7-s + 3.84i·8-s − 2.22·9-s + (−4.51 − 2.78i)10-s + 2.72·11-s + 8.27i·12-s − 6.19i·13-s − 3.88·14-s + (−4.34 − 2.68i)15-s + 1.87·16-s + 3.12i·17-s + ⋯ |
L(s) = 1 | − 1.67i·2-s − 1.31i·3-s − 1.81·4-s + (0.525 − 0.851i)5-s − 2.21·6-s − 0.618i·7-s + 1.35i·8-s − 0.740·9-s + (−1.42 − 0.880i)10-s + 0.822·11-s + 2.38i·12-s − 1.71i·13-s − 1.03·14-s + (−1.12 − 0.692i)15-s + 0.468·16-s + 0.757i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.525 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.602870042\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.602870042\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.17 + 1.90i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + 2.37iT - 2T^{2} \) |
| 3 | \( 1 + 2.28iT - 3T^{2} \) |
| 7 | \( 1 + 1.63iT - 7T^{2} \) |
| 11 | \( 1 - 2.72T + 11T^{2} \) |
| 13 | \( 1 + 6.19iT - 13T^{2} \) |
| 17 | \( 1 - 3.12iT - 17T^{2} \) |
| 23 | \( 1 - 7.29iT - 23T^{2} \) |
| 29 | \( 1 - 2.22T + 29T^{2} \) |
| 31 | \( 1 + 4.42T + 31T^{2} \) |
| 37 | \( 1 + 2.04iT - 37T^{2} \) |
| 41 | \( 1 + 3.92T + 41T^{2} \) |
| 43 | \( 1 - 0.472iT - 43T^{2} \) |
| 47 | \( 1 + 2.30iT - 47T^{2} \) |
| 53 | \( 1 - 6.36iT - 53T^{2} \) |
| 59 | \( 1 - 12.2T + 59T^{2} \) |
| 61 | \( 1 + 4.79T + 61T^{2} \) |
| 67 | \( 1 + 0.670iT - 67T^{2} \) |
| 71 | \( 1 + 2.63T + 71T^{2} \) |
| 73 | \( 1 + 6.51iT - 73T^{2} \) |
| 79 | \( 1 - 4.12T + 79T^{2} \) |
| 83 | \( 1 - 6.42iT - 83T^{2} \) |
| 89 | \( 1 - 17.3T + 89T^{2} \) |
| 97 | \( 1 + 0.129iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.746469918845058592263075016968, −8.008101148675212778355503552177, −7.18765108192087934825902793801, −6.06412609235843817168199534034, −5.26868508633411251648756836535, −4.09707414226647675857661574666, −3.28168885329386409260578309301, −2.06233069342648417286413423828, −1.32743162507858959272267462192, −0.64801841322893468191182777336,
2.25914036541257619747687183358, 3.64758726477908918185970993341, 4.49117014399852409895384651366, 5.12470817319213155883932476797, 6.09403297037601781002353507524, 6.68238902739053807602292938448, 7.23355620976571378626441684510, 8.587333693042207957735279163624, 9.062682781129170944900368318620, 9.565313944995108044807449219000