L(s) = 1 | − 2.37i·2-s − 2.28i·3-s − 3.62·4-s + (1.17 − 1.90i)5-s − 5.41·6-s − 1.63i·7-s + 3.84i·8-s − 2.22·9-s + (−4.51 − 2.78i)10-s + 2.72·11-s + 8.27i·12-s − 6.19i·13-s − 3.88·14-s + (−4.34 − 2.68i)15-s + 1.87·16-s + 3.12i·17-s + ⋯ |
L(s) = 1 | − 1.67i·2-s − 1.31i·3-s − 1.81·4-s + (0.525 − 0.851i)5-s − 2.21·6-s − 0.618i·7-s + 1.35i·8-s − 0.740·9-s + (−1.42 − 0.880i)10-s + 0.822·11-s + 2.38i·12-s − 1.71i·13-s − 1.03·14-s + (−1.12 − 0.692i)15-s + 0.468·16-s + 0.757i·17-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.525−0.851i)Λ(2−s)
Λ(s)=(=(1805s/2ΓC(s+1/2)L(s)(0.525−0.851i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
0.525−0.851i
|
Analytic conductor: |
14.4129 |
Root analytic conductor: |
3.79644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1084,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :1/2), 0.525−0.851i)
|
Particular Values
L(1) |
≈ |
1.602870042 |
L(21) |
≈ |
1.602870042 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.17+1.90i)T |
| 19 | 1 |
good | 2 | 1+2.37iT−2T2 |
| 3 | 1+2.28iT−3T2 |
| 7 | 1+1.63iT−7T2 |
| 11 | 1−2.72T+11T2 |
| 13 | 1+6.19iT−13T2 |
| 17 | 1−3.12iT−17T2 |
| 23 | 1−7.29iT−23T2 |
| 29 | 1−2.22T+29T2 |
| 31 | 1+4.42T+31T2 |
| 37 | 1+2.04iT−37T2 |
| 41 | 1+3.92T+41T2 |
| 43 | 1−0.472iT−43T2 |
| 47 | 1+2.30iT−47T2 |
| 53 | 1−6.36iT−53T2 |
| 59 | 1−12.2T+59T2 |
| 61 | 1+4.79T+61T2 |
| 67 | 1+0.670iT−67T2 |
| 71 | 1+2.63T+71T2 |
| 73 | 1+6.51iT−73T2 |
| 79 | 1−4.12T+79T2 |
| 83 | 1−6.42iT−83T2 |
| 89 | 1−17.3T+89T2 |
| 97 | 1+0.129iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.746469918845058592263075016968, −8.008101148675212778355503552177, −7.18765108192087934825902793801, −6.06412609235843817168199534034, −5.26868508633411251648756836535, −4.09707414226647675857661574666, −3.28168885329386409260578309301, −2.06233069342648417286413423828, −1.32743162507858959272267462192, −0.64801841322893468191182777336,
2.25914036541257619747687183358, 3.64758726477908918185970993341, 4.49117014399852409895384651366, 5.12470817319213155883932476797, 6.09403297037601781002353507524, 6.68238902739053807602292938448, 7.23355620976571378626441684510, 8.587333693042207957735279163624, 9.062682781129170944900368318620, 9.565313944995108044807449219000