Properties

Label 2-1805-5.4-c1-0-71
Degree $2$
Conductor $1805$
Sign $0.824 + 0.565i$
Analytic cond. $14.4129$
Root an. cond. $3.79644$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.937i·2-s + 1.03i·3-s + 1.12·4-s + (−1.84 − 1.26i)5-s + 0.965·6-s − 1.65i·7-s − 2.92i·8-s + 1.93·9-s + (−1.18 + 1.72i)10-s + 4.63·11-s + 1.15i·12-s + 5.55i·13-s − 1.55·14-s + (1.30 − 1.90i)15-s − 0.497·16-s + 7.23i·17-s + ⋯
L(s)  = 1  − 0.662i·2-s + 0.594i·3-s + 0.560·4-s + (−0.824 − 0.565i)5-s + 0.394·6-s − 0.626i·7-s − 1.03i·8-s + 0.646·9-s + (−0.374 + 0.546i)10-s + 1.39·11-s + 0.333i·12-s + 1.54i·13-s − 0.415·14-s + (0.336 − 0.490i)15-s − 0.124·16-s + 1.75i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1805\)    =    \(5 \cdot 19^{2}\)
Sign: $0.824 + 0.565i$
Analytic conductor: \(14.4129\)
Root analytic conductor: \(3.79644\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1805} (1084, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1805,\ (\ :1/2),\ 0.824 + 0.565i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.142721536\)
\(L(\frac12)\) \(\approx\) \(2.142721536\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.84 + 1.26i)T \)
19 \( 1 \)
good2 \( 1 + 0.937iT - 2T^{2} \)
3 \( 1 - 1.03iT - 3T^{2} \)
7 \( 1 + 1.65iT - 7T^{2} \)
11 \( 1 - 4.63T + 11T^{2} \)
13 \( 1 - 5.55iT - 13T^{2} \)
17 \( 1 - 7.23iT - 17T^{2} \)
23 \( 1 + 4.65iT - 23T^{2} \)
29 \( 1 + 5.69T + 29T^{2} \)
31 \( 1 - 6.93T + 31T^{2} \)
37 \( 1 + 0.159iT - 37T^{2} \)
41 \( 1 - 7.04T + 41T^{2} \)
43 \( 1 + 3.60iT - 43T^{2} \)
47 \( 1 + 7.34iT - 47T^{2} \)
53 \( 1 + 0.175iT - 53T^{2} \)
59 \( 1 + 1.30T + 59T^{2} \)
61 \( 1 - 6.22T + 61T^{2} \)
67 \( 1 + 1.45iT - 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 + 2.72iT - 73T^{2} \)
79 \( 1 + 2.47T + 79T^{2} \)
83 \( 1 + 5.13iT - 83T^{2} \)
89 \( 1 - 3.66T + 89T^{2} \)
97 \( 1 - 5.45iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.248264784617904255306370933737, −8.684538706540986784916894939389, −7.52712169775847581258355823562, −6.83425265102113551724801109779, −6.18823009174318351885113482337, −4.55162699987385134200986864689, −3.96598812502222214807269273885, −3.72619844289597477715664371378, −1.93905673873492104704014120719, −1.10766854216506829869853236237, 1.04221071711508462074002121182, 2.48086054064100701316440466044, 3.26210959296877265934326222140, 4.49233692586352936291815899124, 5.62209886550445843596473280398, 6.31337519544654751960513439926, 7.17804857580034374384893669891, 7.48729487435821395716362650530, 8.197530373332173171777676898924, 9.208719407262711906187644756593

Graph of the $Z$-function along the critical line