L(s) = 1 | − 0.717i·2-s + 1.56i·3-s + 1.48·4-s + (0.811 − 2.08i)5-s + 1.12·6-s − 2.51i·7-s − 2.49i·8-s + 0.535·9-s + (−1.49 − 0.581i)10-s − 5.85·11-s + 2.33i·12-s − 0.791i·13-s − 1.80·14-s + (3.27 + 1.27i)15-s + 1.17·16-s − 0.651i·17-s + ⋯ |
L(s) = 1 | − 0.507i·2-s + 0.906i·3-s + 0.742·4-s + (0.362 − 0.931i)5-s + 0.459·6-s − 0.952i·7-s − 0.883i·8-s + 0.178·9-s + (−0.472 − 0.183i)10-s − 1.76·11-s + 0.673i·12-s − 0.219i·13-s − 0.482·14-s + (0.844 + 0.328i)15-s + 0.294·16-s − 0.157i·17-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(−0.362+0.931i)Λ(2−s)
Λ(s)=(=(1805s/2ΓC(s+1/2)L(s)(−0.362+0.931i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
−0.362+0.931i
|
Analytic conductor: |
14.4129 |
Root analytic conductor: |
3.79644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1084,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :1/2), −0.362+0.931i)
|
Particular Values
L(1) |
≈ |
1.852291028 |
L(21) |
≈ |
1.852291028 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.811+2.08i)T |
| 19 | 1 |
good | 2 | 1+0.717iT−2T2 |
| 3 | 1−1.56iT−3T2 |
| 7 | 1+2.51iT−7T2 |
| 11 | 1+5.85T+11T2 |
| 13 | 1+0.791iT−13T2 |
| 17 | 1+0.651iT−17T2 |
| 23 | 1+4.88iT−23T2 |
| 29 | 1+4.83T+29T2 |
| 31 | 1−6.73T+31T2 |
| 37 | 1+0.741iT−37T2 |
| 41 | 1+8.04T+41T2 |
| 43 | 1+0.761iT−43T2 |
| 47 | 1+11.3iT−47T2 |
| 53 | 1−12.8iT−53T2 |
| 59 | 1+2.14T+59T2 |
| 61 | 1+6.75T+61T2 |
| 67 | 1+13.8iT−67T2 |
| 71 | 1−6.05T+71T2 |
| 73 | 1−11.1iT−73T2 |
| 79 | 1−15.7T+79T2 |
| 83 | 1−3.26iT−83T2 |
| 89 | 1−1.07T+89T2 |
| 97 | 1+10.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.326382454071176323499536048024, −8.236660779519274593713517803219, −7.56622029258066328831517412631, −6.66504696758620456812709859157, −5.53411556051841310633161385357, −4.81773103671980383158846856585, −4.04271204301533250823181228529, −3.03289984542557293077449402670, −1.96209350994045207308065939452, −0.62066247085532964721675995595,
1.80196201287786673139558657242, 2.42116606800860355961030921236, 3.21326508617692645954131783083, 5.03830275387404548409092611783, 5.79241341846132851285305440385, 6.38513792485628329890606601265, 7.15895274198292110982864868846, 7.76133916780733040088729980106, 8.282314249552113211680154836711, 9.568968594564731856827669319764