L(s) = 1 | + 1.47i·2-s + 2.52i·3-s − 0.177·4-s + (2.11 + 0.735i)5-s − 3.72·6-s − 4.13i·7-s + 2.68i·8-s − 3.38·9-s + (−1.08 + 3.11i)10-s + 5.45·11-s − 0.449i·12-s − 1.01i·13-s + 6.09·14-s + (−1.85 + 5.33i)15-s − 4.32·16-s + 1.45i·17-s + ⋯ |
L(s) = 1 | + 1.04i·2-s + 1.45i·3-s − 0.0889·4-s + (0.944 + 0.328i)5-s − 1.52·6-s − 1.56i·7-s + 0.950i·8-s − 1.12·9-s + (−0.343 + 0.985i)10-s + 1.64·11-s − 0.129i·12-s − 0.280i·13-s + 1.62·14-s + (−0.479 + 1.37i)15-s − 1.08·16-s + 0.352i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 - 0.328i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.533914502\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.533914502\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.11 - 0.735i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - 1.47iT - 2T^{2} \) |
| 3 | \( 1 - 2.52iT - 3T^{2} \) |
| 7 | \( 1 + 4.13iT - 7T^{2} \) |
| 11 | \( 1 - 5.45T + 11T^{2} \) |
| 13 | \( 1 + 1.01iT - 13T^{2} \) |
| 17 | \( 1 - 1.45iT - 17T^{2} \) |
| 23 | \( 1 - 0.652iT - 23T^{2} \) |
| 29 | \( 1 - 7.82T + 29T^{2} \) |
| 31 | \( 1 + 7.28T + 31T^{2} \) |
| 37 | \( 1 + 2.71iT - 37T^{2} \) |
| 41 | \( 1 + 4.35T + 41T^{2} \) |
| 43 | \( 1 - 7.14iT - 43T^{2} \) |
| 47 | \( 1 - 1.47iT - 47T^{2} \) |
| 53 | \( 1 - 3.40iT - 53T^{2} \) |
| 59 | \( 1 + 9.52T + 59T^{2} \) |
| 61 | \( 1 + 0.766T + 61T^{2} \) |
| 67 | \( 1 + 2.01iT - 67T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 - 4.69iT - 73T^{2} \) |
| 79 | \( 1 - 1.89T + 79T^{2} \) |
| 83 | \( 1 - 9.50iT - 83T^{2} \) |
| 89 | \( 1 - 5.90T + 89T^{2} \) |
| 97 | \( 1 + 11.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.546707488259495632328904175861, −9.004521822423111877665488547256, −7.987667392204324713270562774968, −6.97666587698241579129390389554, −6.52635821224362317091802673728, −5.67429656464343050249880551675, −4.74518969940937961909091380327, −4.03286951546155083219047486515, −3.14546099942404833723773138689, −1.49365553097270101491041635358,
1.03390223353357765894388865540, 1.88265352589101614011515483881, 2.32753079687276830962654167600, 3.40905057642833663082127855735, 4.86559039495173704261748681798, 6.00597651567538051157737282319, 6.46248933357334757179982227720, 7.08559364073024185166118429545, 8.409163076462695911531874362829, 9.064912171248140708302768256875