L(s) = 1 | + 1.96i·2-s + 3.10i·3-s − 1.87·4-s + (−2.04 − 0.902i)5-s − 6.10·6-s + 2.84i·7-s + 0.255i·8-s − 6.62·9-s + (1.77 − 4.02i)10-s − 0.295·11-s − 5.80i·12-s + 2.61i·13-s − 5.59·14-s + (2.80 − 6.34i)15-s − 4.24·16-s + 7.09i·17-s + ⋯ |
L(s) = 1 | + 1.39i·2-s + 1.79i·3-s − 0.935·4-s + (−0.914 − 0.403i)5-s − 2.49·6-s + 1.07i·7-s + 0.0904i·8-s − 2.20·9-s + (0.561 − 1.27i)10-s − 0.0891·11-s − 1.67i·12-s + 0.726i·13-s − 1.49·14-s + (0.723 − 1.63i)15-s − 1.06·16-s + 1.72i·17-s + ⋯ |
Λ(s)=(=(1805s/2ΓC(s)L(s)(0.914+0.403i)Λ(2−s)
Λ(s)=(=(1805s/2ΓC(s+1/2)L(s)(0.914+0.403i)Λ(1−s)
Degree: |
2 |
Conductor: |
1805
= 5⋅192
|
Sign: |
0.914+0.403i
|
Analytic conductor: |
14.4129 |
Root analytic conductor: |
3.79644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1805(1084,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1805, ( :1/2), 0.914+0.403i)
|
Particular Values
L(1) |
≈ |
0.9661289369 |
L(21) |
≈ |
0.9661289369 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.04+0.902i)T |
| 19 | 1 |
good | 2 | 1−1.96iT−2T2 |
| 3 | 1−3.10iT−3T2 |
| 7 | 1−2.84iT−7T2 |
| 11 | 1+0.295T+11T2 |
| 13 | 1−2.61iT−13T2 |
| 17 | 1−7.09iT−17T2 |
| 23 | 1+2.66iT−23T2 |
| 29 | 1−1.25T+29T2 |
| 31 | 1+1.74T+31T2 |
| 37 | 1+0.722iT−37T2 |
| 41 | 1−10.1T+41T2 |
| 43 | 1+4.02iT−43T2 |
| 47 | 1−2.94iT−47T2 |
| 53 | 1−6.98iT−53T2 |
| 59 | 1−8.84T+59T2 |
| 61 | 1−6.62T+61T2 |
| 67 | 1−1.93iT−67T2 |
| 71 | 1−15.7T+71T2 |
| 73 | 1−3.05iT−73T2 |
| 79 | 1+8.06T+79T2 |
| 83 | 1−13.8iT−83T2 |
| 89 | 1+0.551T+89T2 |
| 97 | 1+6.60iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.647401768018907330618434178279, −8.896261050641072507621682543463, −8.557553247990617935050889432676, −7.905897898779127673809379712383, −6.69076205761881642647903345486, −5.77048466681879299093384555108, −5.28947222549819724501358760361, −4.32627264280267077715005768145, −3.90726235914782008766432699283, −2.51547647605495985868180261972,
0.43992828745667645433170694850, 1.00113713789487724328389053992, 2.35391147889967309754566936944, 3.04913661453041155435226341696, 3.89795409380461363214272818903, 5.12309365536705136151505086283, 6.48139726091572628636053961492, 7.21170587320951458058187994797, 7.54014427809725378113654945715, 8.382144135187216178105541033290