L(s) = 1 | − 3-s + 4-s + 5-s − 12-s − 15-s + 20-s + 8·23-s − 2·31-s + 2·47-s − 49-s + 2·53-s − 60-s − 8·69-s + 8·92-s + 2·93-s − 2·113-s + 8·115-s − 2·124-s + 127-s + 131-s + 137-s + 139-s − 2·141-s + 147-s + 149-s + 151-s − 2·155-s + ⋯ |
L(s) = 1 | − 3-s + 4-s + 5-s − 12-s − 15-s + 20-s + 8·23-s − 2·31-s + 2·47-s − 49-s + 2·53-s − 60-s − 8·69-s + 8·92-s + 2·93-s − 2·113-s + 8·115-s − 2·124-s + 127-s + 131-s + 137-s + 139-s − 2·141-s + 147-s + 149-s + 151-s − 2·155-s + ⋯ |
Λ(s)=(=((34⋅54⋅118)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅54⋅118)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅54⋅118
|
Sign: |
1
|
Analytic conductor: |
0.673185 |
Root analytic conductor: |
0.951736 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅54⋅118, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
1.762994634 |
L(21) |
≈ |
1.762994634 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C4 | 1+T+T2+T3+T4 |
| 5 | C4 | 1−T+T2−T3+T4 |
| 11 | | 1 |
good | 2 | C4×C2 | 1−T2+T4−T6+T8 |
| 7 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 13 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 17 | C4×C2 | 1−T2+T4−T6+T8 |
| 19 | C4×C2 | 1−T2+T4−T6+T8 |
| 23 | C1 | (1−T)8 |
| 29 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 31 | C4 | (1+T+T2+T3+T4)2 |
| 37 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 41 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 43 | C1×C1 | (1−T)4(1+T)4 |
| 47 | C4 | (1−T+T2−T3+T4)2 |
| 53 | C4 | (1−T+T2−T3+T4)2 |
| 59 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 61 | C4×C2 | 1−T2+T4−T6+T8 |
| 67 | C1×C1 | (1−T)4(1+T)4 |
| 71 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 73 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 79 | C4×C2 | 1−T2+T4−T6+T8 |
| 83 | C4×C2 | 1−T2+T4−T6+T8 |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.75976743168549194622050018298, −6.70936083732029149022481297475, −6.46240036686568621249048227451, −6.20629981546640164414514760135, −5.90537202730050813324192511362, −5.52970067268537253988029322906, −5.45847000480893646433914717494, −5.40022710397297976812335410404, −5.35899038042081557373083506983, −4.92806663331679141563735998933, −4.77869775618248663827716512182, −4.52182196098430655038893368790, −4.38750063675609260562580982950, −3.82768895340007164308622845790, −3.64951055694796944916546225112, −3.26711293045039118533479787536, −3.17829273602596063121315119260, −2.90248422150130880180294765483, −2.68851887938753586690287345124, −2.38992379716021432069759903252, −2.14810978352900364288800599568, −1.84673757713900894070225206380, −1.16989773128452195689913651419, −1.10845664957994227174785695838, −0.975605875279988683946736662856,
0.975605875279988683946736662856, 1.10845664957994227174785695838, 1.16989773128452195689913651419, 1.84673757713900894070225206380, 2.14810978352900364288800599568, 2.38992379716021432069759903252, 2.68851887938753586690287345124, 2.90248422150130880180294765483, 3.17829273602596063121315119260, 3.26711293045039118533479787536, 3.64951055694796944916546225112, 3.82768895340007164308622845790, 4.38750063675609260562580982950, 4.52182196098430655038893368790, 4.77869775618248663827716512182, 4.92806663331679141563735998933, 5.35899038042081557373083506983, 5.40022710397297976812335410404, 5.45847000480893646433914717494, 5.52970067268537253988029322906, 5.90537202730050813324192511362, 6.20629981546640164414514760135, 6.46240036686568621249048227451, 6.70936083732029149022481297475, 6.75976743168549194622050018298