L(s) = 1 | + 1.53i·2-s − i·3-s − 0.369·4-s + (2.17 + 0.539i)5-s + 1.53·6-s + 0.290i·7-s + 2.51i·8-s − 9-s + (−0.829 + 3.34i)10-s + 0.369i·12-s − 6.97i·13-s − 0.447·14-s + (0.539 − 2.17i)15-s − 4.60·16-s + 4.78i·17-s − 1.53i·18-s + ⋯ |
L(s) = 1 | + 1.08i·2-s − 0.577i·3-s − 0.184·4-s + (0.970 + 0.241i)5-s + 0.628·6-s + 0.109i·7-s + 0.887i·8-s − 0.333·9-s + (−0.262 + 1.05i)10-s + 0.106i·12-s − 1.93i·13-s − 0.119·14-s + (0.139 − 0.560i)15-s − 1.15·16-s + 1.16i·17-s − 0.362i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.373060245\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.373060245\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.17 - 0.539i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - 1.53iT - 2T^{2} \) |
| 7 | \( 1 - 0.290iT - 7T^{2} \) |
| 13 | \( 1 + 6.97iT - 13T^{2} \) |
| 17 | \( 1 - 4.78iT - 17T^{2} \) |
| 19 | \( 1 - 7.75T + 19T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 + 7.41T + 29T^{2} \) |
| 31 | \( 1 - 6.34T + 31T^{2} \) |
| 37 | \( 1 - 3.41iT - 37T^{2} \) |
| 41 | \( 1 - 7.41T + 41T^{2} \) |
| 43 | \( 1 + 0.290iT - 43T^{2} \) |
| 47 | \( 1 + 5.26iT - 47T^{2} \) |
| 53 | \( 1 - 5.75iT - 53T^{2} \) |
| 59 | \( 1 + 3.60T + 59T^{2} \) |
| 61 | \( 1 - 6.68T + 61T^{2} \) |
| 67 | \( 1 + 6.15iT - 67T^{2} \) |
| 71 | \( 1 + 5.07T + 71T^{2} \) |
| 73 | \( 1 - 1.12iT - 73T^{2} \) |
| 79 | \( 1 + 0.921T + 79T^{2} \) |
| 83 | \( 1 + 1.70iT - 83T^{2} \) |
| 89 | \( 1 + 4.34T + 89T^{2} \) |
| 97 | \( 1 + 4.68iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.266628729254300117461823112976, −8.327895060186270712077670120051, −7.66800449360478882212970532168, −7.16537220243693997009522460304, −6.03734412555635897566382552551, −5.75341689450836023137391116210, −5.12486012461702985151094102768, −3.35917160604929187125475277808, −2.48181600999973805300676977255, −1.25587853126072217047620392194,
1.01781725162231601011668709410, 2.14226703114687434567043100894, 2.89545046993389894552480190875, 4.03316793998777281659075572231, 4.75875465007929563546123876387, 5.74539741918098101320367062390, 6.71216654779773861817881812962, 7.39381261156785909510866294742, 8.883350565312083502115241051745, 9.477325992216968582096089911276