L(s) = 1 | + 1.53i·2-s − i·3-s − 0.369·4-s + (2.17 + 0.539i)5-s + 1.53·6-s + 0.290i·7-s + 2.51i·8-s − 9-s + (−0.829 + 3.34i)10-s + 0.369i·12-s − 6.97i·13-s − 0.447·14-s + (0.539 − 2.17i)15-s − 4.60·16-s + 4.78i·17-s − 1.53i·18-s + ⋯ |
L(s) = 1 | + 1.08i·2-s − 0.577i·3-s − 0.184·4-s + (0.970 + 0.241i)5-s + 0.628·6-s + 0.109i·7-s + 0.887i·8-s − 0.333·9-s + (−0.262 + 1.05i)10-s + 0.106i·12-s − 1.93i·13-s − 0.119·14-s + (0.139 − 0.560i)15-s − 1.15·16-s + 1.16i·17-s − 0.362i·18-s + ⋯ |
Λ(s)=(=(1815s/2ΓC(s)L(s)(0.241−0.970i)Λ(2−s)
Λ(s)=(=(1815s/2ΓC(s+1/2)L(s)(0.241−0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
1815
= 3⋅5⋅112
|
Sign: |
0.241−0.970i
|
Analytic conductor: |
14.4928 |
Root analytic conductor: |
3.80694 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1815(364,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1815, ( :1/2), 0.241−0.970i)
|
Particular Values
L(1) |
≈ |
2.373060245 |
L(21) |
≈ |
2.373060245 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1+(−2.17−0.539i)T |
| 11 | 1 |
good | 2 | 1−1.53iT−2T2 |
| 7 | 1−0.290iT−7T2 |
| 13 | 1+6.97iT−13T2 |
| 17 | 1−4.78iT−17T2 |
| 19 | 1−7.75T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+7.41T+29T2 |
| 31 | 1−6.34T+31T2 |
| 37 | 1−3.41iT−37T2 |
| 41 | 1−7.41T+41T2 |
| 43 | 1+0.290iT−43T2 |
| 47 | 1+5.26iT−47T2 |
| 53 | 1−5.75iT−53T2 |
| 59 | 1+3.60T+59T2 |
| 61 | 1−6.68T+61T2 |
| 67 | 1+6.15iT−67T2 |
| 71 | 1+5.07T+71T2 |
| 73 | 1−1.12iT−73T2 |
| 79 | 1+0.921T+79T2 |
| 83 | 1+1.70iT−83T2 |
| 89 | 1+4.34T+89T2 |
| 97 | 1+4.68iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.266628729254300117461823112976, −8.327895060186270712077670120051, −7.66800449360478882212970532168, −7.16537220243693997009522460304, −6.03734412555635897566382552551, −5.75341689450836023137391116210, −5.12486012461702985151094102768, −3.35917160604929187125475277808, −2.48181600999973805300676977255, −1.25587853126072217047620392194,
1.01781725162231601011668709410, 2.14226703114687434567043100894, 2.89545046993389894552480190875, 4.03316793998777281659075572231, 4.75875465007929563546123876387, 5.74539741918098101320367062390, 6.71216654779773861817881812962, 7.39381261156785909510866294742, 8.883350565312083502115241051745, 9.477325992216968582096089911276