L(s) = 1 | + (−1.22 − 0.707i)2-s − 3.15i·3-s + (0.999 + 1.73i)4-s + (2.18 + 3.78i)5-s + (−2.23 + 3.86i)6-s + (5.93 + 3.71i)7-s − 2.82i·8-s − 0.964·9-s − 6.17i·10-s + 15.8i·11-s + (5.46 − 3.15i)12-s + (−4.43 + 12.2i)13-s + (−4.64 − 8.74i)14-s + (11.9 − 6.89i)15-s + (−2.00 + 3.46i)16-s + (27.1 − 15.6i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s − 1.05i·3-s + (0.249 + 0.433i)4-s + (0.436 + 0.756i)5-s + (−0.372 + 0.644i)6-s + (0.847 + 0.530i)7-s − 0.353i·8-s − 0.107·9-s − 0.617i·10-s + 1.44i·11-s + (0.455 − 0.263i)12-s + (−0.340 + 0.940i)13-s + (−0.331 − 0.624i)14-s + (0.795 − 0.459i)15-s + (−0.125 + 0.216i)16-s + (1.59 − 0.922i)17-s + ⋯ |
Λ(s)=(=(182s/2ΓC(s)L(s)(0.964+0.265i)Λ(3−s)
Λ(s)=(=(182s/2ΓC(s+1)L(s)(0.964+0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
182
= 2⋅7⋅13
|
Sign: |
0.964+0.265i
|
Analytic conductor: |
4.95914 |
Root analytic conductor: |
2.22691 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ182(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 182, ( :1), 0.964+0.265i)
|
Particular Values
L(23) |
≈ |
1.32007−0.178694i |
L(21) |
≈ |
1.32007−0.178694i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.22+0.707i)T |
| 7 | 1+(−5.93−3.71i)T |
| 13 | 1+(4.43−12.2i)T |
good | 3 | 1+3.15iT−9T2 |
| 5 | 1+(−2.18−3.78i)T+(−12.5+21.6i)T2 |
| 11 | 1−15.8iT−121T2 |
| 17 | 1+(−27.1+15.6i)T+(144.5−250.i)T2 |
| 19 | 1+14.5T+361T2 |
| 23 | 1+(−7.40+12.8i)T+(−264.5−458.i)T2 |
| 29 | 1+(0.175+0.304i)T+(−420.5+728.i)T2 |
| 31 | 1+(1.96−3.40i)T+(−480.5−832.i)T2 |
| 37 | 1+(4.24+2.44i)T+(684.5+1.18e3i)T2 |
| 41 | 1+(−33.1−57.4i)T+(−840.5+1.45e3i)T2 |
| 43 | 1+(24.7−42.9i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(42.0+72.7i)T+(−1.10e3+1.91e3i)T2 |
| 53 | 1+(−9.86+17.0i)T+(−1.40e3−2.43e3i)T2 |
| 59 | 1+(34.9+60.6i)T+(−1.74e3+3.01e3i)T2 |
| 61 | 1+14.7iT−3.72e3T2 |
| 67 | 1−116.iT−4.48e3T2 |
| 71 | 1+(−9.64−5.56i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(4.36−7.56i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(55.6+96.3i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1−140.T+6.88e3T2 |
| 89 | 1+(−57.5+99.7i)T+(−3.96e3−6.85e3i)T2 |
| 97 | 1+(5.49−9.52i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17478381741298765244685280335, −11.59845823946232325583441087965, −10.27198772116579806280368299842, −9.504118347665308260910302870147, −8.114322590568527899201483891498, −7.25145893661840522820179395658, −6.49216862712457557688753734473, −4.74451569852455989381686929327, −2.53527112543706937844817367099, −1.61924998060201331553793882448,
1.15621916337684214638239892362, 3.61062381713325729645647282302, 5.06885745752111661364100330311, 5.80240447781985230719314829290, 7.65349803586409647815279788146, 8.485405925185420424209880705120, 9.421406182786219863039304530442, 10.48978450198810685499606640674, 10.89406603178818525843069129028, 12.40727228689231755334338990303