L(s) = 1 | − i·2-s − 3.30i·3-s − 4-s − 3.30·6-s − 2.60i·7-s + i·8-s − 7.90·9-s − 2.30·11-s + 3.30i·12-s − 1.30i·13-s − 2.60·14-s + 16-s − 6i·17-s + 7.90i·18-s − 2·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.90i·3-s − 0.5·4-s − 1.34·6-s − 0.984i·7-s + 0.353i·8-s − 2.63·9-s − 0.694·11-s + 0.953i·12-s − 0.361i·13-s − 0.696·14-s + 0.250·16-s − 1.45i·17-s + 1.86i·18-s − 0.458·19-s + ⋯ |
Λ(s)=(=(1850s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(1850s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1850
= 2⋅52⋅37
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
14.7723 |
Root analytic conductor: |
3.84347 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1850(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1850, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.8836342355 |
L(21) |
≈ |
0.8836342355 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 37 | 1−iT |
good | 3 | 1+3.30iT−3T2 |
| 7 | 1+2.60iT−7T2 |
| 11 | 1+2.30T+11T2 |
| 13 | 1+1.30iT−13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+3.90iT−23T2 |
| 29 | 1−3.90T+29T2 |
| 31 | 1+0.302T+31T2 |
| 41 | 1−9.90T+41T2 |
| 43 | 1+0.605iT−43T2 |
| 47 | 1−4.60iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1+10.6T+59T2 |
| 61 | 1−7.51T+61T2 |
| 67 | 1+3.51iT−67T2 |
| 71 | 1−6T+71T2 |
| 73 | 1−12.3iT−73T2 |
| 79 | 1+9.11T+79T2 |
| 83 | 1+2.78iT−83T2 |
| 89 | 1−9.21T+89T2 |
| 97 | 1+16.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.401886326933767201963264357225, −7.72135383188643366673300531933, −7.18532353862061470008727743972, −6.37916493416222010322830762330, −5.43602758158377087054906794543, −4.40597362503277572973340579017, −2.95965143476785906450790399701, −2.43925672926308053463527222283, −1.14046419582047499651588051164, −0.35897365762615882054820879967,
2.39386884788498814711500129560, 3.50602512263894727306296580840, 4.26247640333869065064156096916, 5.09717352272085521908028714941, 5.71868154862360284281038166984, 6.35398749140177310297830914921, 7.84454553961700542486236218614, 8.527273918355052946531069953506, 9.067297388263805762324121347360, 9.750713744738748517869496790594