Properties

Label 2-1859-1.1-c3-0-301
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.98·2-s − 8.48·3-s + 7.85·4-s + 2.25·5-s − 33.7·6-s + 28.5·7-s − 0.583·8-s + 45.0·9-s + 8.99·10-s − 11·11-s − 66.6·12-s + 113.·14-s − 19.1·15-s − 65.1·16-s − 120.·17-s + 179.·18-s + 94.2·19-s + 17.7·20-s − 242.·21-s − 43.7·22-s + 92.8·23-s + 4.95·24-s − 119.·25-s − 153.·27-s + 224.·28-s + 156.·29-s − 76.3·30-s + ⋯
L(s)  = 1  + 1.40·2-s − 1.63·3-s + 0.981·4-s + 0.201·5-s − 2.29·6-s + 1.54·7-s − 0.0257·8-s + 1.66·9-s + 0.284·10-s − 0.301·11-s − 1.60·12-s + 2.17·14-s − 0.329·15-s − 1.01·16-s − 1.72·17-s + 2.34·18-s + 1.13·19-s + 0.198·20-s − 2.51·21-s − 0.424·22-s + 0.841·23-s + 0.0421·24-s − 0.959·25-s − 1.09·27-s + 1.51·28-s + 1.00·29-s − 0.464·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 3.98T + 8T^{2} \)
3 \( 1 + 8.48T + 27T^{2} \)
5 \( 1 - 2.25T + 125T^{2} \)
7 \( 1 - 28.5T + 343T^{2} \)
17 \( 1 + 120.T + 4.91e3T^{2} \)
19 \( 1 - 94.2T + 6.85e3T^{2} \)
23 \( 1 - 92.8T + 1.21e4T^{2} \)
29 \( 1 - 156.T + 2.43e4T^{2} \)
31 \( 1 + 314.T + 2.97e4T^{2} \)
37 \( 1 - 127.T + 5.06e4T^{2} \)
41 \( 1 + 31.1T + 6.89e4T^{2} \)
43 \( 1 + 447.T + 7.95e4T^{2} \)
47 \( 1 - 188.T + 1.03e5T^{2} \)
53 \( 1 - 485.T + 1.48e5T^{2} \)
59 \( 1 - 201.T + 2.05e5T^{2} \)
61 \( 1 + 15.5T + 2.26e5T^{2} \)
67 \( 1 - 170.T + 3.00e5T^{2} \)
71 \( 1 - 7.43T + 3.57e5T^{2} \)
73 \( 1 - 779.T + 3.89e5T^{2} \)
79 \( 1 + 888.T + 4.93e5T^{2} \)
83 \( 1 + 583.T + 5.71e5T^{2} \)
89 \( 1 + 297.T + 7.04e5T^{2} \)
97 \( 1 + 836.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.368290343221256395315062855738, −7.19640596319035570031087015327, −6.65455619230892951823756454138, −5.59169319996536363739078917539, −5.28683012550316730931429803031, −4.65646366551893547534572477719, −3.94964805025962808743628104785, −2.44630244058705147524141233121, −1.37208742334019012765305436311, 0, 1.37208742334019012765305436311, 2.44630244058705147524141233121, 3.94964805025962808743628104785, 4.65646366551893547534572477719, 5.28683012550316730931429803031, 5.59169319996536363739078917539, 6.65455619230892951823756454138, 7.19640596319035570031087015327, 8.368290343221256395315062855738

Graph of the $Z$-function along the critical line