L(s) = 1 | − 4.83·2-s − 7.08·3-s + 15.3·4-s + 9.07·5-s + 34.2·6-s + 2.15·7-s − 35.4·8-s + 23.2·9-s − 43.8·10-s − 11·11-s − 108.·12-s − 10.4·14-s − 64.3·15-s + 48.4·16-s + 49.8·17-s − 112.·18-s + 95.3·19-s + 139.·20-s − 15.2·21-s + 53.1·22-s − 96.0·23-s + 251.·24-s − 42.6·25-s + 26.6·27-s + 33.0·28-s + 115.·29-s + 310.·30-s + ⋯ |
L(s) = 1 | − 1.70·2-s − 1.36·3-s + 1.91·4-s + 0.811·5-s + 2.32·6-s + 0.116·7-s − 1.56·8-s + 0.860·9-s − 1.38·10-s − 0.301·11-s − 2.61·12-s − 0.198·14-s − 1.10·15-s + 0.756·16-s + 0.711·17-s − 1.47·18-s + 1.15·19-s + 1.55·20-s − 0.158·21-s + 0.514·22-s − 0.871·23-s + 2.13·24-s − 0.341·25-s + 0.189·27-s + 0.223·28-s + 0.736·29-s + 1.89·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1+4.83T+8T2 |
| 3 | 1+7.08T+27T2 |
| 5 | 1−9.07T+125T2 |
| 7 | 1−2.15T+343T2 |
| 17 | 1−49.8T+4.91e3T2 |
| 19 | 1−95.3T+6.85e3T2 |
| 23 | 1+96.0T+1.21e4T2 |
| 29 | 1−115.T+2.43e4T2 |
| 31 | 1−78.6T+2.97e4T2 |
| 37 | 1+13.4T+5.06e4T2 |
| 41 | 1+122.T+6.89e4T2 |
| 43 | 1−95.5T+7.95e4T2 |
| 47 | 1+361.T+1.03e5T2 |
| 53 | 1−617.T+1.48e5T2 |
| 59 | 1+723.T+2.05e5T2 |
| 61 | 1+549.T+2.26e5T2 |
| 67 | 1−554.T+3.00e5T2 |
| 71 | 1−99.2T+3.57e5T2 |
| 73 | 1+609.T+3.89e5T2 |
| 79 | 1+586.T+4.93e5T2 |
| 83 | 1+5.23T+5.71e5T2 |
| 89 | 1+789.T+7.04e5T2 |
| 97 | 1+1.65e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.515263003155460836581071162364, −7.78397921241041712740274353439, −6.99510760539184346282375633562, −6.16014872786719887786352392164, −5.64480975434470692685012444863, −4.69803408327296558717899571023, −3.00034100339696436288970918688, −1.78289929543610708464300869293, −0.988319188236137167928241106737, 0,
0.988319188236137167928241106737, 1.78289929543610708464300869293, 3.00034100339696436288970918688, 4.69803408327296558717899571023, 5.64480975434470692685012444863, 6.16014872786719887786352392164, 6.99510760539184346282375633562, 7.78397921241041712740274353439, 8.515263003155460836581071162364