L(s) = 1 | + 0.231·2-s + 8.68·3-s − 7.94·4-s − 0.297·5-s + 2.01·6-s − 7.88·7-s − 3.69·8-s + 48.4·9-s − 0.0690·10-s − 11·11-s − 69.0·12-s − 1.82·14-s − 2.58·15-s + 62.7·16-s − 15.3·17-s + 11.2·18-s − 120.·19-s + 2.36·20-s − 68.4·21-s − 2.55·22-s + 156.·23-s − 32.1·24-s − 124.·25-s + 186.·27-s + 62.6·28-s + 217.·29-s − 0.599·30-s + ⋯ |
L(s) = 1 | + 0.0819·2-s + 1.67·3-s − 0.993·4-s − 0.0266·5-s + 0.137·6-s − 0.425·7-s − 0.163·8-s + 1.79·9-s − 0.00218·10-s − 0.301·11-s − 1.66·12-s − 0.0349·14-s − 0.0445·15-s + 0.979·16-s − 0.219·17-s + 0.147·18-s − 1.45·19-s + 0.0264·20-s − 0.711·21-s − 0.0247·22-s + 1.41·23-s − 0.273·24-s − 0.999·25-s + 1.33·27-s + 0.422·28-s + 1.39·29-s − 0.00364·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1−0.231T+8T2 |
| 3 | 1−8.68T+27T2 |
| 5 | 1+0.297T+125T2 |
| 7 | 1+7.88T+343T2 |
| 17 | 1+15.3T+4.91e3T2 |
| 19 | 1+120.T+6.85e3T2 |
| 23 | 1−156.T+1.21e4T2 |
| 29 | 1−217.T+2.43e4T2 |
| 31 | 1−209.T+2.97e4T2 |
| 37 | 1−182.T+5.06e4T2 |
| 41 | 1+286.T+6.89e4T2 |
| 43 | 1+419.T+7.95e4T2 |
| 47 | 1+196.T+1.03e5T2 |
| 53 | 1+175.T+1.48e5T2 |
| 59 | 1+185.T+2.05e5T2 |
| 61 | 1−140.T+2.26e5T2 |
| 67 | 1−484.T+3.00e5T2 |
| 71 | 1+833.T+3.57e5T2 |
| 73 | 1+1.15e3T+3.89e5T2 |
| 79 | 1+147.T+4.93e5T2 |
| 83 | 1+737.T+5.71e5T2 |
| 89 | 1+1.19e3T+7.04e5T2 |
| 97 | 1−422.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.355751413449869094815796636329, −8.234270799205112007115804222399, −7.05863634901222320135973396015, −6.20980723854287796996810894946, −4.83524715878985797704519536412, −4.27903677446040746004482084535, −3.29016176690569524472338542910, −2.70735796087711096205712051995, −1.46007588523744801658049136796, 0,
1.46007588523744801658049136796, 2.70735796087711096205712051995, 3.29016176690569524472338542910, 4.27903677446040746004482084535, 4.83524715878985797704519536412, 6.20980723854287796996810894946, 7.05863634901222320135973396015, 8.234270799205112007115804222399, 8.355751413449869094815796636329