Properties

Label 2-1859-1.1-c3-0-313
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.231·2-s + 8.68·3-s − 7.94·4-s − 0.297·5-s + 2.01·6-s − 7.88·7-s − 3.69·8-s + 48.4·9-s − 0.0690·10-s − 11·11-s − 69.0·12-s − 1.82·14-s − 2.58·15-s + 62.7·16-s − 15.3·17-s + 11.2·18-s − 120.·19-s + 2.36·20-s − 68.4·21-s − 2.55·22-s + 156.·23-s − 32.1·24-s − 124.·25-s + 186.·27-s + 62.6·28-s + 217.·29-s − 0.599·30-s + ⋯
L(s)  = 1  + 0.0819·2-s + 1.67·3-s − 0.993·4-s − 0.0266·5-s + 0.137·6-s − 0.425·7-s − 0.163·8-s + 1.79·9-s − 0.00218·10-s − 0.301·11-s − 1.66·12-s − 0.0349·14-s − 0.0445·15-s + 0.979·16-s − 0.219·17-s + 0.147·18-s − 1.45·19-s + 0.0264·20-s − 0.711·21-s − 0.0247·22-s + 1.41·23-s − 0.273·24-s − 0.999·25-s + 1.33·27-s + 0.422·28-s + 1.39·29-s − 0.00364·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 0.231T + 8T^{2} \)
3 \( 1 - 8.68T + 27T^{2} \)
5 \( 1 + 0.297T + 125T^{2} \)
7 \( 1 + 7.88T + 343T^{2} \)
17 \( 1 + 15.3T + 4.91e3T^{2} \)
19 \( 1 + 120.T + 6.85e3T^{2} \)
23 \( 1 - 156.T + 1.21e4T^{2} \)
29 \( 1 - 217.T + 2.43e4T^{2} \)
31 \( 1 - 209.T + 2.97e4T^{2} \)
37 \( 1 - 182.T + 5.06e4T^{2} \)
41 \( 1 + 286.T + 6.89e4T^{2} \)
43 \( 1 + 419.T + 7.95e4T^{2} \)
47 \( 1 + 196.T + 1.03e5T^{2} \)
53 \( 1 + 175.T + 1.48e5T^{2} \)
59 \( 1 + 185.T + 2.05e5T^{2} \)
61 \( 1 - 140.T + 2.26e5T^{2} \)
67 \( 1 - 484.T + 3.00e5T^{2} \)
71 \( 1 + 833.T + 3.57e5T^{2} \)
73 \( 1 + 1.15e3T + 3.89e5T^{2} \)
79 \( 1 + 147.T + 4.93e5T^{2} \)
83 \( 1 + 737.T + 5.71e5T^{2} \)
89 \( 1 + 1.19e3T + 7.04e5T^{2} \)
97 \( 1 - 422.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.355751413449869094815796636329, −8.234270799205112007115804222399, −7.05863634901222320135973396015, −6.20980723854287796996810894946, −4.83524715878985797704519536412, −4.27903677446040746004482084535, −3.29016176690569524472338542910, −2.70735796087711096205712051995, −1.46007588523744801658049136796, 0, 1.46007588523744801658049136796, 2.70735796087711096205712051995, 3.29016176690569524472338542910, 4.27903677446040746004482084535, 4.83524715878985797704519536412, 6.20980723854287796996810894946, 7.05863634901222320135973396015, 8.234270799205112007115804222399, 8.355751413449869094815796636329

Graph of the $Z$-function along the critical line