L(s) = 1 | + 3.18·2-s + 9.92·3-s + 2.17·4-s − 1.24·5-s + 31.6·6-s − 27.3·7-s − 18.5·8-s + 71.4·9-s − 3.95·10-s − 11·11-s + 21.5·12-s − 87.1·14-s − 12.3·15-s − 76.6·16-s + 72.7·17-s + 227.·18-s − 104.·19-s − 2.69·20-s − 271.·21-s − 35.0·22-s − 98.5·23-s − 184.·24-s − 123.·25-s + 441.·27-s − 59.3·28-s − 26.0·29-s − 39.2·30-s + ⋯ |
L(s) = 1 | + 1.12·2-s + 1.90·3-s + 0.271·4-s − 0.110·5-s + 2.15·6-s − 1.47·7-s − 0.821·8-s + 2.64·9-s − 0.125·10-s − 0.301·11-s + 0.519·12-s − 1.66·14-s − 0.211·15-s − 1.19·16-s + 1.03·17-s + 2.98·18-s − 1.25·19-s − 0.0301·20-s − 2.81·21-s − 0.340·22-s − 0.893·23-s − 1.56·24-s − 0.987·25-s + 3.14·27-s − 0.400·28-s − 0.166·29-s − 0.238·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1−3.18T+8T2 |
| 3 | 1−9.92T+27T2 |
| 5 | 1+1.24T+125T2 |
| 7 | 1+27.3T+343T2 |
| 17 | 1−72.7T+4.91e3T2 |
| 19 | 1+104.T+6.85e3T2 |
| 23 | 1+98.5T+1.21e4T2 |
| 29 | 1+26.0T+2.43e4T2 |
| 31 | 1−170.T+2.97e4T2 |
| 37 | 1+340.T+5.06e4T2 |
| 41 | 1+261.T+6.89e4T2 |
| 43 | 1−10.6T+7.95e4T2 |
| 47 | 1+577.T+1.03e5T2 |
| 53 | 1+2.47T+1.48e5T2 |
| 59 | 1−109.T+2.05e5T2 |
| 61 | 1+678.T+2.26e5T2 |
| 67 | 1+320.T+3.00e5T2 |
| 71 | 1−502.T+3.57e5T2 |
| 73 | 1−310.T+3.89e5T2 |
| 79 | 1−410.T+4.93e5T2 |
| 83 | 1−809.T+5.71e5T2 |
| 89 | 1−993.T+7.04e5T2 |
| 97 | 1+172.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.436981369866148756181981664121, −7.85768577116099177730752220310, −6.76216587290631287374637543259, −6.19290853101676344433890995480, −4.94632586030325510151073191030, −3.91702601083358788548991065690, −3.49798400302828978822848164586, −2.85195230196389376411278775702, −1.91727274551041571068685054482, 0,
1.91727274551041571068685054482, 2.85195230196389376411278775702, 3.49798400302828978822848164586, 3.91702601083358788548991065690, 4.94632586030325510151073191030, 6.19290853101676344433890995480, 6.76216587290631287374637543259, 7.85768577116099177730752220310, 8.436981369866148756181981664121