Properties

Label 2-1859-1.1-c3-0-375
Degree $2$
Conductor $1859$
Sign $-1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.18·2-s + 9.92·3-s + 2.17·4-s − 1.24·5-s + 31.6·6-s − 27.3·7-s − 18.5·8-s + 71.4·9-s − 3.95·10-s − 11·11-s + 21.5·12-s − 87.1·14-s − 12.3·15-s − 76.6·16-s + 72.7·17-s + 227.·18-s − 104.·19-s − 2.69·20-s − 271.·21-s − 35.0·22-s − 98.5·23-s − 184.·24-s − 123.·25-s + 441.·27-s − 59.3·28-s − 26.0·29-s − 39.2·30-s + ⋯
L(s)  = 1  + 1.12·2-s + 1.90·3-s + 0.271·4-s − 0.110·5-s + 2.15·6-s − 1.47·7-s − 0.821·8-s + 2.64·9-s − 0.125·10-s − 0.301·11-s + 0.519·12-s − 1.66·14-s − 0.211·15-s − 1.19·16-s + 1.03·17-s + 2.98·18-s − 1.25·19-s − 0.0301·20-s − 2.81·21-s − 0.340·22-s − 0.893·23-s − 1.56·24-s − 0.987·25-s + 3.14·27-s − 0.400·28-s − 0.166·29-s − 0.238·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 3.18T + 8T^{2} \)
3 \( 1 - 9.92T + 27T^{2} \)
5 \( 1 + 1.24T + 125T^{2} \)
7 \( 1 + 27.3T + 343T^{2} \)
17 \( 1 - 72.7T + 4.91e3T^{2} \)
19 \( 1 + 104.T + 6.85e3T^{2} \)
23 \( 1 + 98.5T + 1.21e4T^{2} \)
29 \( 1 + 26.0T + 2.43e4T^{2} \)
31 \( 1 - 170.T + 2.97e4T^{2} \)
37 \( 1 + 340.T + 5.06e4T^{2} \)
41 \( 1 + 261.T + 6.89e4T^{2} \)
43 \( 1 - 10.6T + 7.95e4T^{2} \)
47 \( 1 + 577.T + 1.03e5T^{2} \)
53 \( 1 + 2.47T + 1.48e5T^{2} \)
59 \( 1 - 109.T + 2.05e5T^{2} \)
61 \( 1 + 678.T + 2.26e5T^{2} \)
67 \( 1 + 320.T + 3.00e5T^{2} \)
71 \( 1 - 502.T + 3.57e5T^{2} \)
73 \( 1 - 310.T + 3.89e5T^{2} \)
79 \( 1 - 410.T + 4.93e5T^{2} \)
83 \( 1 - 809.T + 5.71e5T^{2} \)
89 \( 1 - 993.T + 7.04e5T^{2} \)
97 \( 1 + 172.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.436981369866148756181981664121, −7.85768577116099177730752220310, −6.76216587290631287374637543259, −6.19290853101676344433890995480, −4.94632586030325510151073191030, −3.91702601083358788548991065690, −3.49798400302828978822848164586, −2.85195230196389376411278775702, −1.91727274551041571068685054482, 0, 1.91727274551041571068685054482, 2.85195230196389376411278775702, 3.49798400302828978822848164586, 3.91702601083358788548991065690, 4.94632586030325510151073191030, 6.19290853101676344433890995480, 6.76216587290631287374637543259, 7.85768577116099177730752220310, 8.436981369866148756181981664121

Graph of the $Z$-function along the critical line