L(s) = 1 | − 4.68·2-s − 2.64·3-s + 13.9·4-s − 16.8·5-s + 12.3·6-s − 13.2·7-s − 28.0·8-s − 20.0·9-s + 79.2·10-s − 11·11-s − 36.9·12-s + 62.3·14-s + 44.6·15-s + 19.6·16-s − 38.1·17-s + 93.8·18-s − 48.0·19-s − 236.·20-s + 35.1·21-s + 51.5·22-s − 161.·23-s + 74.1·24-s + 160.·25-s + 124.·27-s − 185.·28-s + 303.·29-s − 209.·30-s + ⋯ |
L(s) = 1 | − 1.65·2-s − 0.508·3-s + 1.74·4-s − 1.51·5-s + 0.842·6-s − 0.717·7-s − 1.23·8-s − 0.741·9-s + 2.50·10-s − 0.301·11-s − 0.888·12-s + 1.18·14-s + 0.768·15-s + 0.307·16-s − 0.544·17-s + 1.22·18-s − 0.579·19-s − 2.64·20-s + 0.364·21-s + 0.499·22-s − 1.46·23-s + 0.630·24-s + 1.28·25-s + 0.885·27-s − 1.25·28-s + 1.94·29-s − 1.27·30-s + ⋯ |
Λ(s)=(=(1859s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1859s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+11T |
| 13 | 1 |
good | 2 | 1+4.68T+8T2 |
| 3 | 1+2.64T+27T2 |
| 5 | 1+16.8T+125T2 |
| 7 | 1+13.2T+343T2 |
| 17 | 1+38.1T+4.91e3T2 |
| 19 | 1+48.0T+6.85e3T2 |
| 23 | 1+161.T+1.21e4T2 |
| 29 | 1−303.T+2.43e4T2 |
| 31 | 1+261.T+2.97e4T2 |
| 37 | 1+405.T+5.06e4T2 |
| 41 | 1+241.T+6.89e4T2 |
| 43 | 1−184.T+7.95e4T2 |
| 47 | 1+80.8T+1.03e5T2 |
| 53 | 1−472.T+1.48e5T2 |
| 59 | 1−260.T+2.05e5T2 |
| 61 | 1−336.T+2.26e5T2 |
| 67 | 1−417.T+3.00e5T2 |
| 71 | 1−140.T+3.57e5T2 |
| 73 | 1−496.T+3.89e5T2 |
| 79 | 1−120.T+4.93e5T2 |
| 83 | 1−561.T+5.71e5T2 |
| 89 | 1+607.T+7.04e5T2 |
| 97 | 1+49.5T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.293341729528764606632691769648, −8.147251570099646170852320142856, −6.93971870827145390028593656980, −6.64383510032891576337090054076, −5.43449856542786442036287346918, −4.21683965392705263648634953212, −3.24097917025196583994852518986, −2.12858640506250261780818760002, −0.56363589350013418841133830134, 0,
0.56363589350013418841133830134, 2.12858640506250261780818760002, 3.24097917025196583994852518986, 4.21683965392705263648634953212, 5.43449856542786442036287346918, 6.64383510032891576337090054076, 6.93971870827145390028593656980, 8.147251570099646170852320142856, 8.293341729528764606632691769648